These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 27300272)
1. Level repulsion of GHz phononic surface waves in quartz substrate with finite-depth holes. Yeh SL; Lin YC; Tsai YC; Ono T; Wu TT Ultrasonics; 2016 Sep; 71():106-110. PubMed ID: 27300272 [TBL] [Abstract][Full Text] [Related]
2. Focusing and waveguiding of Lamb waves in micro-fabricated piezoelectric phononic plates. Chiou MJ; Lin YC; Ono T; Esashi M; Yeh SL; Wu TT Ultrasonics; 2014 Sep; 54(7):1984-90. PubMed ID: 24909597 [TBL] [Abstract][Full Text] [Related]
3. Refraction, beam splitting and dispersion of GHz surface acoustic waves by a phononic crystal. Matsuda O; Koga H; Nishita H; Tomoda M; Otsuka PH; Wright OB Photoacoustics; 2023 Apr; 30():100471. PubMed ID: 36950517 [TBL] [Abstract][Full Text] [Related]
4. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves. Ash BJ; Worsfold SR; Vukusic P; Nash GR Nat Commun; 2017 Aug; 8(1):174. PubMed ID: 28765535 [TBL] [Abstract][Full Text] [Related]
5. Full band gap for surface acoustic waves in a piezoelectric phononic crystal. Laude V; Wilm M; Benchabane S; Khelif A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036607. PubMed ID: 15903605 [TBL] [Abstract][Full Text] [Related]
6. A GaAs phononic crystal with shallow noncylindrical holes. Petrus JA; Mathew R; Stotz JA IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):364-8. PubMed ID: 24474141 [TBL] [Abstract][Full Text] [Related]
7. Complete band gaps in two-dimensional phononic crystal slabs. Khelif A; Aoubiza B; Mohammadi S; Adibi A; Laude V Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046610. PubMed ID: 17155195 [TBL] [Abstract][Full Text] [Related]
8. Polarization of Acoustic Waves in Two-Dimensional Phononic Crystals Based on Fused Silica. Marunin MV; Polikarpova NV Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499810 [TBL] [Abstract][Full Text] [Related]
9. Band structure analysis of leaky Bloch waves in 2D phononic crystal plates. Mazzotti M; Miniaci M; Bartoli I Ultrasonics; 2017 Feb; 74():140-143. PubMed ID: 27776276 [TBL] [Abstract][Full Text] [Related]
10. Phononic crystals based on LiNbO3 realized using domain inversion by electron-beam irradiation. Assouar BM; Vincent B; Moubchir H IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):273-8. PubMed ID: 18334333 [TBL] [Abstract][Full Text] [Related]
11. Velocity of a SAW propagating in a 2D phononic crystal. Bonello B; Charles C; Ganot F Ultrasonics; 2006 Dec; 44 Suppl 1():e1259-63. PubMed ID: 16782148 [TBL] [Abstract][Full Text] [Related]
12. Watching surface waves in phononic crystals. Wright OB; Matsuda O Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2049):. PubMed ID: 26217053 [TBL] [Abstract][Full Text] [Related]
13. A one-dimensional optomechanical crystal with a complete phononic band gap. Gomis-Bresco J; Navarro-Urrios D; Oudich M; El-Jallal S; Griol A; Puerto D; Chavez E; Pennec Y; Djafari-Rouhani B; Alzina F; Martínez A; Torres CM Nat Commun; 2014 Jul; 5():4452. PubMed ID: 25043827 [TBL] [Abstract][Full Text] [Related]
14. Low-Frequency Bandgap Characterization of a Locally Resonant Pentagonal Phononic Crystal Beam Structure. Zhang S; Qian D; Zhang Z; Ge H Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612216 [TBL] [Abstract][Full Text] [Related]
15. Tunable characteristics of low-frequency bandgaps in two-dimensional multivibrator phononic crystal plates under prestrain. Zhu HF; Sun XW; Song T; Wen XD; Liu XX; Feng JS; Liu ZJ Sci Rep; 2021 Apr; 11(1):8389. PubMed ID: 33863986 [TBL] [Abstract][Full Text] [Related]
16. Temperature effect on the bandgaps of surface and bulk acoustic waves in two-dimensional phononic crystals. Huang ZG; Wu TT IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Mar; 52(3):365-70. PubMed ID: 15857044 [TBL] [Abstract][Full Text] [Related]
17. Acoustic Add-Drop filter involving a ring resonator based on a One-Dimensional surface phononic crystal. Biçer A Ultrasonics; 2021 Dec; 117():106551. PubMed ID: 34399135 [TBL] [Abstract][Full Text] [Related]
18. Effects of initial stress on band gap of Love waves in a layered domain-inverted phononic crystal structure. Yang G; Zhang M; Hu J; Huang B; Xu M; Zhu Z; Du J Ultrasonics; 2020 Aug; 106():106145. PubMed ID: 32353615 [TBL] [Abstract][Full Text] [Related]
19. Ultrahigh-frequency surface acoustic wave transducers on ZnO/SiO₂/Si using nanoimprint lithography. Büyükköse S; Vratzov B; Ataç D; van der Veen J; Santos PV; van der Wiel WG Nanotechnology; 2012 Aug; 23(31):315303. PubMed ID: 22802162 [TBL] [Abstract][Full Text] [Related]
20. Tunable Hypersonic Bandgap Formation in Anisotropic Crystals of Dumbbell Nanoparticles. Kim H; Gueddida A; Wang Z; Djafari-Rouhani B; Fytas G; Furst EM ACS Nano; 2023 Oct; 17(19):19224-19231. PubMed ID: 37756140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]