BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 2730047)

  • 1. [The possibilities of hyperthermia from an engineering standpoint].
    Saitoh Y; Matsuda J; Kato K
    Gan To Kagaku Ryoho; 1989 Apr; 16(4 Pt 2-2):1425-31. PubMed ID: 2730047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heating applicator based on reentrant cavity with optimized local heating characteristics.
    Ishihara Y; Kameyama Y; Minegishi Y; Wadamori N
    Int J Hyperthermia; 2008 Dec; 24(8):694-704. PubMed ID: 18608576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-frequency RF hyperthermia: IV--A 27 MHz hybrid applicator for localized deep tumor heating.
    Franconi C; Raganella L; Tiberio CA
    IEEE Trans Biomed Eng; 1991 Mar; 38(3):287-93. PubMed ID: 2066143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An inverse method to optimize heating conditions in RF-capacitive hyperthermia.
    Tsuda N; Kuroda K; Suzuki Y
    IEEE Trans Biomed Eng; 1996 Oct; 43(10):1029-37. PubMed ID: 9214820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstrip-antenna design for hyperthermia treatment of superficial tumors.
    Montecchia F
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):580-8. PubMed ID: 1601439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localized heating characteristics of hyperthermia using a reentrant cavity.
    Ishihara Y; Wadamori N
    J Med Eng Technol; 2008; 32(5):348-57. PubMed ID: 18821413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 27 MHz conformal capacitive ring (CR) applicators for uniform hyperthermic/diathermic treatment of body segments with axial fields.
    Raganella L; Banci G; Vannucci I; Franconi C; Tiberio CA
    IEEE Trans Biomed Eng; 1989 Nov; 36(11):1124-32. PubMed ID: 2807321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [OMRON RF hyperthermia treatment system HEH-500 C].
    Nakase Y
    Gan No Rinsho; 1986 Oct; 32(13):1638-43. PubMed ID: 3795483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An edge-element based finite element model of microwave heating in hyperthermia: method and verification.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):426-40. PubMed ID: 12227929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of swine abdominal temperature distribution after heating with BSD-1000, an annular phased array system (APAS), and Thermotron RF-8.
    Tsukiyama I; Kajiura Y; Egawa S; Ishioka K; Nishimura K; Shida T
    Radiat Med; 1990; 8(6):250-5. PubMed ID: 2093947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigation of an adaptive feedback algorithm for hot spot reduction in radio-frequency phased-array hyperthermia.
    Fenn AJ; King GA
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):273-80. PubMed ID: 8682539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the impedance method to calculate 3-D power deposition patterns for hyperthermia with capacitive plate electrodes.
    Orcutt N; Gandhi OP
    IEEE Trans Biomed Eng; 1990 Jan; 37(1):36-43. PubMed ID: 2303268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element analysis of the re-entrant type resonant cavity applicator for brain tumor hyperthermia.
    Yabuhara T; Kato K; Tsuchiya K; Shigihara T; Shindo Y; Iwazaki R; Uzuka T; Fujii Y; Takahashi H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3540-3. PubMed ID: 18002761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Body conformable 915 MHz microstrip array applicators for large surface area hyperthermia.
    Lee ER; Wilsey TR; Tarczy-Hornoch P; Kapp DS; Fessenden P; Lohrbach A; Prionas SD
    IEEE Trans Biomed Eng; 1992 May; 39(5):470-83. PubMed ID: 1526638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Temperature distribution and geometry of the electrodes in RF interstitial hyperthermia using circular and interstitial electrodes].
    Kataoka M; Nishiyama Y; Fujii T; Kawamura M; Mogami H; Itoh H; Iio A; Hamamoto K
    Nihon Igaku Hoshasen Gakkai Zasshi; 1992 May; 52(5):646-52. PubMed ID: 1508637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metamaterial lens applicator for microwave hyperthermia of breast cancer.
    Wang G; Gong Y
    Int J Hyperthermia; 2009; 25(6):434-45. PubMed ID: 19925323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the re-entrant type resonant cavity applicator for brain tumor hyperthermia - experimental heating results.
    Yabuhara T; Kato K; Tsuchiya K; Shigihara T; Uzuka T; Takahashi H
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5161-4. PubMed ID: 17945880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and construction of resonant cavity applicator for brain tumor hyperthermia treatment without contact.
    Takahashi Y; Kato K; Tsuchiya K; Yabuhara T; Uzuka T; Takahashi H
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4074-7. PubMed ID: 17945823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis and optimization of waveguide multiapplicator hyperthermia systems.
    Boag A; Leviatan Y; Boag A
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):946-52. PubMed ID: 8288286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Present and future status of noninvasive selective deep heating using RF in hyperthermia.
    Kato H; Ishida T
    Med Biol Eng Comput; 1993 Jul; 31 Suppl():S2-11. PubMed ID: 8231321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.