These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27300810)

  • 1. Maximum efficiency of steady-state heat engines at arbitrary power.
    Ryabov A; Holubec V
    Phys Rev E; 2016 May; 93(5):050101. PubMed ID: 27300810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines.
    Sheng S; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022136. PubMed ID: 25768487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency and its bounds of minimally nonlinear irreversible heat engines at arbitrary power.
    Long R; Liu W
    Phys Rev E; 2016 Nov; 94(5-1):052114. PubMed ID: 27967103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency at and near maximum power of low-dissipation heat engines.
    Holubec V; Ryabov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052125. PubMed ID: 26651665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine.
    Qi C; Ding Z; Chen L; Ge Y; Feng H
    Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33807398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing thermodynamic cycles with two finite-sized reservoirs.
    Yuan H; Ma YH; Sun CP
    Phys Rev E; 2022 Feb; 105(2):L022101. PubMed ID: 35291152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Route towards the optimization at given power of thermoelectric heat engines with broken time-reversal symmetry.
    Zhang R; Li QW; Tang FR; Yang XQ; Bai L
    Phys Rev E; 2017 Aug; 96(2-1):022133. PubMed ID: 28950616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantum-dot heat engine operating close to the thermodynamic efficiency limits.
    Josefsson M; Svilans A; Burke AM; Hoffmann EA; Fahlvik S; Thelander C; Leijnse M; Linke H
    Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximum efficiency of absorption refrigerators at arbitrary cooling power.
    Ye Z; Holubec V
    Phys Rev E; 2021 May; 103(5-1):052125. PubMed ID: 34134287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Power, efficiency, and fluctuations in steady-state heat engines.
    Benenti G; Casati G; Wang J
    Phys Rev E; 2020 Oct; 102(4-1):040103. PubMed ID: 33212678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endoreversible quantum heat engines in the linear response regime.
    Wang H; He J; Wang J
    Phys Rev E; 2017 Jul; 96(1-1):012152. PubMed ID: 29347192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency at maximum power of thermally coupled heat engines.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041144. PubMed ID: 22680454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weighted reciprocal of temperature, weighted thermal flux, and their applications in finite-time thermodynamics.
    Sheng S; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012129. PubMed ID: 24580194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-level laser heat engine at optimal performance with ecological function.
    Singh V; Johal RS
    Phys Rev E; 2019 Jul; 100(1-1):012138. PubMed ID: 31499856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasilinear irreversible thermodynamics of a low-temperature-differential kinematic Stirling heat engine.
    Izumida Y
    Phys Rev E; 2020 Jul; 102(1-1):012142. PubMed ID: 32795077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power, Efficiency and Fluctuations in a Quantum Point Contact as Steady-State Thermoelectric Heat Engine.
    Kheradsoud S; Dashti N; Misiorny M; Potts PP; Splettstoesser J; Samuelsson P
    Entropy (Basel); 2019 Aug; 21(8):. PubMed ID: 33267490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the self-propulsion parity on the efficiency of a fuel-consuming active heat engine.
    Oh Y; Baek Y
    Phys Rev E; 2023 Aug; 108(2-1):024602. PubMed ID: 37723679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear irreversible thermodynamics and Onsager reciprocity for information-driven engines.
    Yamamoto S; Ito S; Shiraishi N; Sagawa T
    Phys Rev E; 2016 Nov; 94(5-1):052121. PubMed ID: 27967007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.