These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
417 related articles for article (PubMed ID: 27300824)
1. Majority-vote model on spatially embedded networks: Crossover from mean-field to Ising universality classes. Sampaio Filho CI; Dos Santos TB; Moreira AA; Moreira FG; Andrade JS Phys Rev E; 2016 May; 93(5):052101. PubMed ID: 27300824 [TBL] [Abstract][Full Text] [Related]
2. Majority-vote model with degree-weighted influence on complex networks. Kim M; Yook SH Phys Rev E; 2021 Feb; 103(2-1):022302. PubMed ID: 33735960 [TBL] [Abstract][Full Text] [Related]
4. Majority-vote model on hyperbolic lattices. Wu ZX; Holme P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011133. PubMed ID: 20365349 [TBL] [Abstract][Full Text] [Related]
5. Upper and lower critical decay exponents of Ising ferromagnets with long-range interaction. Horita T; Suwa H; Todo S Phys Rev E; 2017 Jan; 95(1-1):012143. PubMed ID: 28208323 [TBL] [Abstract][Full Text] [Related]
6. Phase transition of a one-dimensional Ising model with distance-dependent connections. Chang Y; Sun L; Cai X Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021101. PubMed ID: 17930000 [TBL] [Abstract][Full Text] [Related]
7. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field. Korniss G; White CJ; Rikvold PA; Novotny MA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327 [TBL] [Abstract][Full Text] [Related]
8. Dynamic phase transitions on the kagome Ising ferromagnet. Demir Vatansever Z Phys Rev E; 2022 Nov; 106(5-1):054143. PubMed ID: 36559500 [TBL] [Abstract][Full Text] [Related]
9. Quantum effects on criticality of an Ising model in scale-free networks: Beyond mean-field universality class. Yi H Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):012103. PubMed ID: 20365414 [TBL] [Abstract][Full Text] [Related]
10. Verification of Ising phase transitions in the three-dimensional Ashkin-Teller model using Monte Carlo simulations. Szukowski G; Kamieniarz G; Musiał G Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031124. PubMed ID: 18517346 [TBL] [Abstract][Full Text] [Related]
11. Nonequilibrium model on Apollonian networks. Lima FW; Moreira AA; Araújo AD Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056109. PubMed ID: 23214845 [TBL] [Abstract][Full Text] [Related]
12. Critical behavior of a three-dimensional random-bond Ising model using finite-time scaling with extensive Monte Carlo renormalization-group method. Xiong W; Zhong F; Yuan W; Fan S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051132. PubMed ID: 20866210 [TBL] [Abstract][Full Text] [Related]
13. Quantum critical behavior of the quantum Ising model on fractal lattices. Yi H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012118. PubMed ID: 25679581 [TBL] [Abstract][Full Text] [Related]
14. Phase transition in the majority-vote model on the Archimedean lattices. Yu U Phys Rev E; 2017 Jan; 95(1-1):012101. PubMed ID: 28208396 [TBL] [Abstract][Full Text] [Related]
15. Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: universality with respect to the stochastic dynamics. Buendía GM; Rikvold PA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051108. PubMed ID: 19113096 [TBL] [Abstract][Full Text] [Related]
16. Impact of site dilution and agent diffusion on the critical behavior of the majority-vote model. Crokidakis N; de Oliveira PM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041147. PubMed ID: 22680457 [TBL] [Abstract][Full Text] [Related]
17. Droplet finite-size scaling of the majority-vote model on scale-free networks. Alencar DSM; Alves TFA; Lima FWS; Ferreira RS; Alves GA; Macedo-Filho A Phys Rev E; 2023 Jul; 108(1-1):014308. PubMed ID: 37583232 [TBL] [Abstract][Full Text] [Related]
18. Effects of quenched disorder in the two-dimensional Potts model: a Monte Carlo study. Paredes V R; Valbuena J Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):6275-80. PubMed ID: 11969611 [TBL] [Abstract][Full Text] [Related]
19. Infinite-randomness critical point in the two-dimensional disordered contact process. Vojta T; Farquhar A; Mast J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011111. PubMed ID: 19257005 [TBL] [Abstract][Full Text] [Related]
20. Universality of the local persistence exponent for models in the directed Ising class in one dimension. Shambharkar ND; Gade PM Phys Rev E; 2019 Sep; 100(3-1):032119. PubMed ID: 31639921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]