These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 27300839)

  • 1. Scaling analysis of random walks with persistence lengths: Application to self-avoiding walks.
    Granzotti CR; Martinez AS; da Silva MA
    Phys Rev E; 2016 May; 93(5):052116. PubMed ID: 27300839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-dependent structural behavior of self-avoiding walks on three-dimensional Sierpinski sponges.
    Fritsche M; Heermann DW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051119. PubMed ID: 20866197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-avoiding walks on Sierpinski lattices in two and three dimensions.
    Ordemann A; Porto M; Roman HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021107. PubMed ID: 11863503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed self-avoiding walks in random media.
    Santra SB; Seitz WA; Klein DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):067101. PubMed ID: 11415255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universality classes for self-avoiding walks in a strongly disordered system.
    Braunstein LA; Buldyrev SV; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056128. PubMed ID: 12059668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Violation of the des Cloizeaux relation for self-avoiding walks on Sierpinski square lattices.
    Marini F; Ordemann A; Porto M; Roman HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051102. PubMed ID: 17279872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-precision estimate of the hydrodynamic radius for self-avoiding walks.
    Clisby N; Dünweg B
    Phys Rev E; 2016 Nov; 94(5-1):052102. PubMed ID: 27967042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Winding angles of long lattice walks.
    Hammer Y; Kantor Y
    J Chem Phys; 2016 Jul; 145(1):014906. PubMed ID: 27394124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Generalized des Cloizeaux" exponent for self-avoiding walks on the incipient percolation cluster.
    Ordemann A; Porto M; Eduardo Roman H; Havlin S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 1):020104. PubMed ID: 11308451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymptotic scaling behavior of self-avoiding walks on critical percolation clusters.
    Fricke N; Janke W
    Phys Rev Lett; 2014 Dec; 113(25):255701. PubMed ID: 25554895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymers confined between two parallel plane walls.
    Hsu HP; Grassberger P
    J Chem Phys; 2004 Jan; 120(4):2034-41. PubMed ID: 15268339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-avoiding walks and connective constants in clustered scale-free networks.
    Herrero CP
    Phys Rev E; 2019 Jan; 99(1-1):012314. PubMed ID: 30780369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random-Length Random Walks and Finite-Size Scaling in High Dimensions.
    Zhou Z; Grimm J; Fang S; Deng Y; Garoni TM
    Phys Rev Lett; 2018 Nov; 121(18):185701. PubMed ID: 30444384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulations of lattice models for single polymer systems.
    Hsu HP
    J Chem Phys; 2014 Oct; 141(16):164903. PubMed ID: 25362337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal order statistics of random walks.
    Schehr G; Majumdar SN
    Phys Rev Lett; 2012 Jan; 108(4):040601. PubMed ID: 22400820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trapping in self-avoiding walks with nearest-neighbor attraction.
    Hooper W; Klotz AR
    Phys Rev E; 2020 Sep; 102(3-1):032132. PubMed ID: 33076037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swelling-collapse transition of self-attracting walks.
    Ordemann A; Berkolaiko G; Havlin S; Bunde A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):R1005-7. PubMed ID: 11046524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crossover phenomena in spin models with medium-range interactions and self-avoiding walks with medium-range jumps.
    Caracciolo S; Causo MS; Pelissetto A; Rossi P; Vicari E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046130. PubMed ID: 11690113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aftermath epidemics: Percolation on the sites visited by generalized random walks.
    Feshanjerdi M; Masoudi AA; Grassberger P; Ebrahimi M
    Phys Rev E; 2023 Aug; 108(2-1):024312. PubMed ID: 37723758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Position and Orientation Distributions for Locally Self-Avoiding Walks in the Presence of Obstacles.
    Skliros A; Chirikjian GS
    Polymer (Guildf); 2008 Mar; 49(6):1701-1715. PubMed ID: 18496591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.