BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 27300859)

  • 1. Catalytic conversion reactions in nanoporous systems with concentration-dependent selectivity: Statistical mechanical modeling.
    García A; Wang J; Windus TL; Sadow AD; Evans JW
    Phys Rev E; 2016 May; 93(5):052137. PubMed ID: 27300859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic conversion in nanoporous materials: Concentration oscillations and spatial correlations due to inhibited transport and intermolecular interactions.
    García A; Evans JW
    J Chem Phys; 2016 Nov; 145(17):174705. PubMed ID: 27825244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling reactivity of nanoporous catalyst materials by tuning reaction product-pore interior interactions: statistical mechanical modeling.
    Wang J; Ackerman DM; Lin VS; Pruski M; Evans JW
    J Chem Phys; 2013 Apr; 138(13):134705. PubMed ID: 23574250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic conversion reactions mediated by single-file diffusion in linear nanopores: hydrodynamic versus stochastic behavior.
    Ackerman DM; Wang J; Wendel JH; Liu DJ; Pruski M; Evans JW
    J Chem Phys; 2011 Mar; 134(11):114107. PubMed ID: 21428607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical mechanical modeling of catalytic polymerization within surface-functionalized mesoporous materials.
    Liu DJ; Chen HT; Lin VS; Evans JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011801. PubMed ID: 19658720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore diameter dependence of catalytic activity: p-nitrobenzaldehyde conversion to an aldol product in amine-functionalized mesoporous silica.
    García A; Slowing II; Evans JW
    J Chem Phys; 2018 Jul; 149(2):024101. PubMed ID: 30007386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic Monte Carlo Simulation of Statistical Mechanical Models and Coarse-Grained Mesoscale Descriptions of Catalytic Reaction-Diffusion Processes: 1D Nanoporous and 2D Surface Systems.
    Liu DJ; Garcia A; Wang J; Ackerman DM; Wang CJ; Evans JW
    Chem Rev; 2015 Jun; 115(12):5979-6050. PubMed ID: 25909347
    [No Abstract]   [Full Text] [Related]  

  • 8. Generalized hydrodynamic treatment of the interplay between restricted transport and catalytic reactions in nanoporous materials.
    Ackerman DM; Wang J; Evans JW
    Phys Rev Lett; 2012 Jun; 108(22):228301. PubMed ID: 23003660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracer counterpermeation analysis of diffusivity in finite-length nanopores with and without single-file dynamics.
    Ackerman DM; Evans JW
    Phys Rev E; 2017 Jan; 95(1-1):012132. PubMed ID: 28208315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive Monte Carlo and grand-canonical Monte Carlo simulations of the propene metathesis reaction system.
    Hansen N; Jakobtorweihen S; Keil FJ
    J Chem Phys; 2005 Apr; 122(16):164705. PubMed ID: 15945697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling.
    Schaefer C; Jansen AP
    J Chem Phys; 2013 Feb; 138(5):054102. PubMed ID: 23406093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion-mediated geminate reactions under excluded volume interactions.
    Seki K; Wojcik M; Tachiya M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011131. PubMed ID: 22400536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations.
    Mayawala K; Vlachos DG; Edwards JS
    Biophys Chem; 2006 Jun; 121(3):194-208. PubMed ID: 16504372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice model of diffusion-limited bimolecular chemical reactions in confined environments.
    Schmit JD; Kamber E; Kondev J
    Phys Rev Lett; 2009 May; 102(21):218302. PubMed ID: 19519142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microimaging of transient concentration profiles of reactant and product molecules during catalytic conversion in nanoporous materials.
    Titze T; Chmelik C; Kullmann J; Prager L; Miersemann E; Gläser R; Enke D; Weitkamp J; Kärger J
    Angew Chem Int Ed Engl; 2015 Apr; 54(17):5060-4. PubMed ID: 25720828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of molecular modeling in confined systems: impact and prospects.
    Gubbins KE; Liu YC; Moore JD; Palmer JC
    Phys Chem Chem Phys; 2011 Jan; 13(1):58-85. PubMed ID: 21116563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulation of diffusion and reaction in two-dimensional cell structures.
    Riley MR; Buettner HM; Muzzio FJ; Reyes SC
    Biophys J; 1995 May; 68(5):1716-26. PubMed ID: 7612815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining reactive and configurational-bias Monte Carlo: confinement influence on the propene metathesis reaction system in various zeolites.
    Jakobtorweihen S; Hansen N; Keil FJ
    J Chem Phys; 2006 Dec; 125(22):224709. PubMed ID: 17176156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction-controlled diffusion: Monte Carlo simulations.
    Reid BA; Täuber UC; Brunson JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046121. PubMed ID: 14683016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle-based modeling of heterogeneous chemical kinetics including mass transfer.
    Sengar A; Kuipers JAM; van Santen RA; Padding JT
    Phys Rev E; 2017 Aug; 96(2-1):022115. PubMed ID: 28950548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.