BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 27300950)

  • 1. Additivity, density fluctuations, and nonequilibrium thermodynamics for active Brownian particles.
    Chakraborti S; Mishra S; Pradhan P
    Phys Rev E; 2016 May; 93(5):052606. PubMed ID: 27300950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additivity and density fluctuations in Vicsek-like models of self-propelled particles.
    Chakraborti S; Pradhan P
    Phys Rev E; 2019 May; 99(5-1):052604. PubMed ID: 31212568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mode-coupling theory for tagged-particle motion of active Brownian particles.
    Reichert J; Mandal S; Voigtmann T
    Phys Rev E; 2021 Oct; 104(4-1):044608. PubMed ID: 34781467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Athermal phase separation of self-propelled particles with no alignment.
    Fily Y; Marchetti MC
    Phys Rev Lett; 2012 Jun; 108(23):235702. PubMed ID: 23003972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks.
    Levis D; Berthier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062301. PubMed ID: 25019770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleation pathway and kinetics of phase-separating active Brownian particles.
    Richard D; Löwen H; Speck T
    Soft Matter; 2016 Jun; 12(24):5257-64. PubMed ID: 27126952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active Brownian equation of state: metastability and phase coexistence.
    Levis D; Codina J; Pagonabarraga I
    Soft Matter; 2017 Nov; 13(44):8113-8119. PubMed ID: 29105717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic thermodynamics of active Brownian particles.
    Ganguly C; Chaudhuri D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032102. PubMed ID: 24125209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-body correlations and conditional forces in suspensions of active hard disks.
    Härtel A; Richard D; Speck T
    Phys Rev E; 2018 Jan; 97(1-1):012606. PubMed ID: 29448434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additivity property and emergence of power laws in nonequilibrium steady states.
    Das A; Chatterjee S; Pradhan P; Mohanty PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052107. PubMed ID: 26651647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions.
    Alarcón F; Valeriani C; Pagonabarraga I
    Soft Matter; 2017 Jan; 13(4):814-826. PubMed ID: 28066850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.
    Feng M; Hou Z
    Soft Matter; 2017 Jun; 13(25):4464-4481. PubMed ID: 28580481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic shapes of floppy vesicles enclosing active Brownian particles with membrane adhesion.
    Iyer P; Gompper G; Fedosov DA
    Soft Matter; 2023 May; 19(19):3436-3449. PubMed ID: 37132446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virial pressure in systems of spherical active Brownian particles.
    Winkler RG; Wysocki A; Gompper G
    Soft Matter; 2015 Sep; 11(33):6680-91. PubMed ID: 26221908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuum theory of phase separation kinetics for active Brownian particles.
    Stenhammar J; Tiribocchi A; Allen RJ; Marenduzzo D; Cates ME
    Phys Rev Lett; 2013 Oct; 111(14):145702. PubMed ID: 24138255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theory for the phase behavior of mixtures of active particles.
    Takatori SC; Brady JF
    Soft Matter; 2015 Oct; 11(40):7920-31. PubMed ID: 26323207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode-coupling theory for active Brownian particles.
    Liluashvili A; Ónody J; Voigtmann T
    Phys Rev E; 2017 Dec; 96(6-1):062608. PubMed ID: 29347410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase coexistence of active Brownian particles.
    Hermann S; Krinninger P; de Las Heras D; Schmidt M
    Phys Rev E; 2019 Nov; 100(5-1):052604. PubMed ID: 31869869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coexistence of active Brownian disks: van der Waals theory and analytical results.
    Speck T
    Phys Rev E; 2021 Jan; 103(1-1):012607. PubMed ID: 33601548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonequilibrium glassy dynamics of self-propelled hard disks.
    Berthier L
    Phys Rev Lett; 2014 Jun; 112(22):220602. PubMed ID: 24949749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.