These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 27300950)

  • 21. Phase Diagram of Active Brownian Spheres: Crystallization and the Metastability of Motility-Induced Phase Separation.
    Omar AK; Klymko K; GrandPre T; Geissler PL
    Phys Rev Lett; 2021 May; 126(18):188002. PubMed ID: 34018789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase transition and emergence of active temperature in an active Brownian system in underdamped background.
    De Karmakar S; Ganesh R
    Phys Rev E; 2020 Mar; 101(3-1):032121. PubMed ID: 32290015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The parental active model: A unifying stochastic description of self-propulsion.
    Caprini L; Sprenger AR; Löwen H; Wittmann R
    J Chem Phys; 2022 Feb; 156(7):071102. PubMed ID: 35183083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermodynamic formula for the cumulant generating function of time-averaged current.
    Nemoto T; Sasa S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061113. PubMed ID: 22304046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interacting Brownian dynamics in a nonequilibrium particle bath.
    Steffenoni S; Kroy K; Falasco G
    Phys Rev E; 2016 Dec; 94(6-1):062139. PubMed ID: 28085452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonequilibrium mode-coupling theory for dense active systems of self-propelled particles.
    Nandi SK; Gov NS
    Soft Matter; 2017 Oct; 13(41):7609-7616. PubMed ID: 29028064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluctuation-response relation of many Brownian particles under nonequilibrium conditions.
    Nakamura T; Sasa S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021108. PubMed ID: 18351988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glassy dynamics of athermal self-propelled particles: Computer simulations and a nonequilibrium microscopic theory.
    Szamel G; Flenner E; Berthier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062304. PubMed ID: 26172716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Active Brownian particles moving in a random Lorentz gas.
    Zeitz M; Wolff K; Stark H
    Eur Phys J E Soft Matter; 2017 Feb; 40(2):23. PubMed ID: 28236113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Classical Nucleation Theory Description of Active Colloid Assembly.
    Redner GS; Wagner CG; Baskaran A; Hagan MF
    Phys Rev Lett; 2016 Sep; 117(14):148002. PubMed ID: 27740811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The nonequilibrium glassy dynamics of self-propelled particles.
    Flenner E; Szamel G; Berthier L
    Soft Matter; 2016 Sep; 12(34):7136-49. PubMed ID: 27499055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Work fluctuation relation of an active Brownian particle in a viscoelastic fluid.
    Narinder N; Paul S; Bechinger C
    Phys Rev E; 2021 Sep; 104(3-1):034605. PubMed ID: 34654101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anomalous velocity distributions in active Brownian suspensions.
    Fiege A; Vollmayr-Lee B; Zippelius A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022138. PubMed ID: 24032806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Order-disorder transition in repulsive self-propelled particle systems.
    Hiraoka T; Shimada T; Ito N
    Phys Rev E; 2016 Dec; 94(6-1):062612. PubMed ID: 28085368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emergence of Collective Motion in a Model of Interacting Brownian Particles.
    Dossetti V; Sevilla FJ
    Phys Rev Lett; 2015 Jul; 115(5):058301. PubMed ID: 26274444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brownian motion with active fluctuations.
    Romanczuk P; Schimansky-Geier L
    Phys Rev Lett; 2011 Jun; 106(23):230601. PubMed ID: 21770491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluctuations and pattern formation in self-propelled particles.
    Mishra S; Baskaran A; Marchetti MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061916. PubMed ID: 20866449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamic theory of phase transitions in driven lattice gases.
    Pradhan P; Seifert U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051130. PubMed ID: 22181391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active Brownian and inertial particles in disordered environments: Short-time expansion of the mean-square displacement.
    Breoni D; Schmiedeberg M; Löwen H
    Phys Rev E; 2020 Dec; 102(6-1):062604. PubMed ID: 33465967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theory for the dynamics of dense systems of athermal self-propelled particles.
    Szamel G
    Phys Rev E; 2016 Jan; 93(1):012603. PubMed ID: 26871118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.