These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27300952)

  • 1. Introduction of effective dielectric constant to the Poisson-Nernst-Planck model.
    Sawada A
    Phys Rev E; 2016 May; 93(5):052608. PubMed ID: 27300952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Independence of the effective dielectric constant of an electrolytic solution on the ionic distribution in the linear Poisson-Nernst-Planck model.
    Alexe-Ionescu AL; Barbero G; Lelidis I
    J Chem Phys; 2014 Aug; 141(8):084505. PubMed ID: 25173019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reply to "Comment on 'Modeling of electrode polarization for electrolytic cells with a limited ionic adsorption' ".
    Sawada A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):056402. PubMed ID: 25353929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode process of mobile ions in generating space-charge polarization.
    Sawada A; Manaka T
    Phys Rev E; 2024 Mar; 109(3-1):034802. PubMed ID: 38632775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric process of space-charge polarization for an electrolytic cell with blocking electrodes.
    Sawada A
    J Chem Phys; 2008 Aug; 129(6):064701. PubMed ID: 18715096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency-Dependent Dielectric Permittivity in Poisson-Nernst-Planck Model.
    Rosseto MP; Evangelista LR; Lenzi EK; Zola RS; Ribeiro de Almeida RR
    J Phys Chem B; 2022 Sep; 126(34):6446-6453. PubMed ID: 35984722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reanalysis of the electrode polarization in electrolytic cells limited by blocking electrodes.
    Macdonald JR; Barbero G
    Phys Rev E; 2016 Oct; 94(4-1):042608. PubMed ID: 27841515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of electrode polarization for electrolytic cells with a limited ionic adsorption.
    Sawada A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032406. PubMed ID: 24125275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation and finite-difference approaches.
    Xu Z; Ma M; Liu P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013307. PubMed ID: 25122410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of dielectric layers on estimates of diffusion coefficients and concentrations of ions from impedance spectroscopy.
    Khazimullin MV; Lebedev YA
    Phys Rev E; 2019 Dec; 100(6-1):062601. PubMed ID: 31962391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utility of continuum diffusion models for analyzing mobile-ion immittance data: electrode polarization, bulk, and generation-recombination effects.
    Macdonald JR
    J Phys Condens Matter; 2010 Dec; 22(49):495101. PubMed ID: 21406781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.
    Chen D
    Bull Math Biol; 2016 Aug; 78(8):1703-26. PubMed ID: 27480225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of various boundary conditions on the response of Poisson-Nernst-Planck impedance spectroscopy analysis models and comparison with a continuous-time random-walk model.
    Macdonald JR
    J Phys Chem A; 2011 Nov; 115(46):13370-80. PubMed ID: 21923111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similarities and differences among the models proposed for real electrodes in the Poisson-Nernst-Planck theory.
    Barbero G; Scalerandi M
    J Chem Phys; 2012 Feb; 136(8):084705. PubMed ID: 22380057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model.
    Schuss Z; Nadler B; Eisenberg RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036116. PubMed ID: 11580403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free ions in kerosene-based ferrofluid detected by impedance spectroscopy.
    Batalioto F; Barbero G; Campos AFC; Figueiredo Neto AM
    Phys Chem Chem Phys; 2021 Feb; 23(4):2819-2824. PubMed ID: 33471003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.
    Chen D; Lear J; Eisenberg B
    Biophys J; 1997 Jan; 72(1):97-116. PubMed ID: 8994596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical interpretation of Warburg's impedance in unsupported electrolytic cells.
    Barbero G
    Phys Chem Chem Phys; 2017 Dec; 19(48):32575-32579. PubMed ID: 29189837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric impedance of a sample of dielectric liquid containing two groups of ions limited by ohmic electrodes: a study with pure water.
    Duarte AR; Batalioto F; Barbero G; Neto AM
    J Phys Chem B; 2013 Mar; 117(10):2985-91. PubMed ID: 23421408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport process of ions in insulating media in the hyperbolic diffusion regime.
    Barbero G; Macdonald JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051503. PubMed ID: 20866231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.