These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 27300961)

  • 1. Line tension and morphology of a sessile droplet on a spherical substrate.
    Iwamatsu M
    Phys Rev E; 2016 May; 93(5):052804. PubMed ID: 27300961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Line tension and morphology of a droplet and a bubble attached to the inner wall of a spherical cavity.
    Iwamatsu M
    J Chem Phys; 2016 Apr; 144(14):144704. PubMed ID: 27083742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-dependent contact angle and the wetting and drying transition of a droplet adsorbed onto a spherical substrate: Line-tension effect.
    Iwamatsu M
    Phys Rev E; 2016 Oct; 94(4-1):042803. PubMed ID: 27841462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-Energy Barrier of Filling a Spherical Cavity in the Presence of Line Tension: Implication to the Energy Barrier between the Cassie and Wenzel States on a Superhydrophobic Surface with Spherical Cavities.
    Iwamatsu M
    Langmuir; 2016 Sep; 32(37):9475-83. PubMed ID: 27564853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Line-tension-induced scenario of heterogeneous nucleation on a spherical substrate and in a spherical cavity.
    Iwamatsu M
    J Chem Phys; 2015 Jul; 143(1):014701. PubMed ID: 26156486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond-Cassie Mode of Wetting and Local Contact Angles of Droplets on Checkboard-Patterned Surfaces.
    Carmeliet J; Chen L; Kang Q; Derome D
    Langmuir; 2017 Jun; 33(24):6192-6200. PubMed ID: 28561595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Going beyond the standard line tension: Size-dependent contact angles of water nanodroplets.
    Kanduč M
    J Chem Phys; 2017 Nov; 147(17):174701. PubMed ID: 29117696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spreading law on a completely wettable spherical substrate: The energy balance approach.
    Iwamatsu M
    Phys Rev E; 2017 May; 95(5-1):052802. PubMed ID: 28618509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of line tension on droplets in the submicrometer range.
    Heim LO; Bonaccurso E
    Langmuir; 2013 Nov; 29(46):14147-53. PubMed ID: 24156499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Piling-to-buckling transition in the drying process of polymer solution drop on substrate having a large contact angle.
    Kajiya T; Nishitani E; Yamaue T; Doi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011601. PubMed ID: 16486155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spreading law of non-Newtonian power-law liquids on a spherical substrate by an energy-balance approach.
    Iwamatsu M
    Phys Rev E; 2017 Jul; 96(1-1):012803. PubMed ID: 29347224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermostability analysis of line-tension-associated nucleation at a gas-liquid interface.
    Singha SK; Das PK; Maiti B
    Phys Rev E; 2017 Jan; 95(1-1):012802. PubMed ID: 28208415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contact angles from Young's equation in molecular dynamics simulations.
    Jiang H; Müller-Plathe F; Panagiotopoulos AZ
    J Chem Phys; 2017 Aug; 147(8):084708. PubMed ID: 28863512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topography- and topology-driven spreading of non-Newtonian power-law liquids on a flat and a spherical substrate.
    Iwamatsu M
    Phys Rev E; 2017 Oct; 96(4-1):042803. PubMed ID: 29347502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous nucleation at a wall near a wetting transition: a Monte Carlo test of the classical theory.
    Winter D; Virnau P; Binder K
    J Phys Condens Matter; 2009 Nov; 21(46):464118. PubMed ID: 21715882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Line tension of sessile droplets: Thermodynamic considerations.
    Zhang H; Wang F; Nestler B
    Phys Rev E; 2023 Nov; 108(5-1):054121. PubMed ID: 38115470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Line tension effects for liquid droplets on circular surface domains.
    Blecua P; Lipowsky R; Kierfeld J
    Langmuir; 2006 Dec; 22(26):11041-59. PubMed ID: 17154583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.
    Ravipati S; Aymard B; Kalliadasis S; Galindo A
    J Chem Phys; 2018 Apr; 148(16):164704. PubMed ID: 29716213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of line tension on axisymmetric nanoscale capillary bridges at the liquid-vapor equilibrium.
    Iwamatsu M; Mori H
    Phys Rev E; 2019 Oct; 100(4-1):042802. PubMed ID: 31770920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.