These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 27301006)
1. Statistical mechanical analysis of linear programming relaxation for combinatorial optimization problems. Takabe S; Hukushima K Phys Rev E; 2016 May; 93(5):053308. PubMed ID: 27301006 [TBL] [Abstract][Full Text] [Related]
2. Effect of constraint relaxation on the minimum vertex cover problem in random graphs. Dote A; Hukushima K Phys Rev E; 2024 Apr; 109(4-1):044304. PubMed ID: 38755898 [TBL] [Abstract][Full Text] [Related]
3. Minimum vertex cover problems on random hypergraphs: replica symmetric solution and a leaf removal algorithm. Takabe S; Hukushima K Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062139. PubMed ID: 25019756 [TBL] [Abstract][Full Text] [Related]
4. Phase transition for cutting-plane approach to vertex-cover problem. Dewenter T; Hartmann AK Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041128. PubMed ID: 23214550 [TBL] [Abstract][Full Text] [Related]
5. Cutting-plane algorithms and solution whitening for the vertex-cover problem. Claussen G; Hartmann AK Phys Rev E; 2022 Sep; 106(3-2):035305. PubMed ID: 36266853 [TBL] [Abstract][Full Text] [Related]
6. Stability analysis on the finite-temperature replica-symmetric and first-step replica-symmetry-broken cavity solutions of the random vertex cover problem. Zhang P; Zeng Y; Zhou H Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021122. PubMed ID: 19792092 [TBL] [Abstract][Full Text] [Related]
7. Minimal vertex covers on finite-connectivity random graphs: a hard-sphere lattice-gas picture. Weigt M; Hartmann AK Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056127. PubMed ID: 11414981 [TBL] [Abstract][Full Text] [Related]
8. Statistical mechanics of the minimum vertex cover problem in stochastic block models. Suzuki M; Kabashima Y Phys Rev E; 2019 Dec; 100(6-1):062101. PubMed ID: 31962393 [TBL] [Abstract][Full Text] [Related]
9. Spin-glass phase transitions and minimum energy of the random feedback vertex set problem. Qin SM; Zeng Y; Zhou HJ Phys Rev E; 2016 Aug; 94(2-1):022146. PubMed ID: 27627285 [TBL] [Abstract][Full Text] [Related]
10. Clustering analysis of the ground-state structure of the vertex-cover problem. Barthel W; Hartmann AK Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066120. PubMed ID: 15697447 [TBL] [Abstract][Full Text] [Related]
11. Typical approximation performance for maximum coverage problem. Takabe S; Maehara T; Hukushima K Phys Rev E; 2018 Feb; 97(2-1):022138. PubMed ID: 29548101 [TBL] [Abstract][Full Text] [Related]
12. l Wu B; Ghanem B IEEE Trans Pattern Anal Mach Intell; 2019 Jul; 41(7):1695-1708. PubMed ID: 29994196 [TBL] [Abstract][Full Text] [Related]
13. Ground-state entropy of the random vertex-cover problem. Zhou J; Zhou H Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):020103. PubMed ID: 19391695 [TBL] [Abstract][Full Text] [Related]
14. Threshold values, stability analysis, and high-q asymptotics for the coloring problem on random graphs. Krzakała F; Pagnani A; Weigt M Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046705. PubMed ID: 15600563 [TBL] [Abstract][Full Text] [Related]
15. Detecting the solution space of vertex cover by mutual determinations and backbones. Wei W; Zhang R; Guo B; Zheng Z Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016112. PubMed ID: 23005496 [TBL] [Abstract][Full Text] [Related]
16. Statistical mechanics of the hitting set problem. Mézard M; Tarzia M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041124. PubMed ID: 17994953 [TBL] [Abstract][Full Text] [Related]
17. Number of guards needed by a museum: a phase transition in vertex covering of random graphs. Weigt M; Hartmann AK Phys Rev Lett; 2000 Jun; 84(26 Pt 1):6118-21. PubMed ID: 10991138 [TBL] [Abstract][Full Text] [Related]
18. Index statistical properties of sparse random graphs. Metz FL; Stariolo DA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042153. PubMed ID: 26565214 [TBL] [Abstract][Full Text] [Related]
19. Solving and analyzing side-chain positioning problems using linear and integer programming. Kingsford CL; Chazelle B; Singh M Bioinformatics; 2005 Apr; 21(7):1028-36. PubMed ID: 15546935 [TBL] [Abstract][Full Text] [Related]
20. Reduced-Size Integer Linear Programming Models for String Selection Problems: Application to the Farthest String Problem. Zörnig P J Comput Biol; 2015 Aug; 22(8):729-42. PubMed ID: 25525691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]