BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 27301022)

  • 21. Design and synthesis of 2-(2-isonicotinoylhydrazineylidene)propanamides as InhA inhibitors with high antitubercular activity.
    Pflégr V; Horváth L; Stolaříková J; Pál A; Korduláková J; Bősze S; Vinšová J; Krátký M
    Eur J Med Chem; 2021 Nov; 223():113668. PubMed ID: 34198149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel Hybrid 1,2,4- and 1,2,3-Triazoles Targeting Mycobacterium Tuberculosis Enoyl Acyl Carrier Protein Reductase (InhA): Design, Synthesis, and Molecular Docking.
    El Sawy MA; Elshatanofy MM; El Kilany Y; Kandeel K; Elwakil BH; Hagar M; Aouad MR; Albelwi FF; Rezki N; Jaremko M; El Ashry ESH
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A virtual screen discovers novel, fragment-sized inhibitors of Mycobacterium tuberculosis InhA.
    Perryman AL; Yu W; Wang X; Ekins S; Forli S; Li SG; Freundlich JS; Tonge PJ; Olson AJ
    J Chem Inf Model; 2015 Mar; 55(3):645-59. PubMed ID: 25636146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. First triclosan-based macrocyclic inhibitors of InhA enzyme.
    Rodriguez F; Saffon N; Sammartino JC; Degiacomi G; Pasca MR; Lherbet C
    Bioorg Chem; 2020 Jan; 95():103498. PubMed ID: 31855823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discovery of novel InhA reductase inhibitors: application of pharmacophore- and shape-based screening approach.
    Kumar UC; Bvs SK; Mahmood S; D S; Kumar-Sahu P; Pulakanam S; Ballell L; Alvarez-Gomez D; Malik S; Jarp S
    Future Med Chem; 2013 Mar; 5(3):249-59. PubMed ID: 23464516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Function of heterologous Mycobacterium tuberculosis InhA, a type 2 fatty acid synthase enzyme involved in extending C20 fatty acids to C60-to-C90 mycolic acids, during de novo lipoic acid synthesis in Saccharomyces cerevisiae.
    Gurvitz A; Hiltunen JK; Kastaniotis AJ
    Appl Environ Microbiol; 2008 Aug; 74(16):5078-85. PubMed ID: 18552191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aqueous Molecular Dynamics Simulations of the M. tuberculosis Enoyl-ACP Reductase-NADH System and Its Complex with a Substrate Mimic or Diphenyl Ethers Inhibitors.
    da Silva Lima CH; de Alencastro RB; Kaiser CR; de Souza MV; Rodrigues CR; Albuquerque MG
    Int J Mol Sci; 2015 Oct; 16(10):23695-722. PubMed ID: 26457706
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pyrrolidine carboxamides as a novel class of inhibitors of enoyl acyl carrier protein reductase from Mycobacterium tuberculosis.
    He X; Alian A; Stroud R; Ortiz de Montellano PR
    J Med Chem; 2006 Oct; 49(21):6308-23. PubMed ID: 17034137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mycobacterium enoyl acyl carrier protein reductase (InhA): A key target for antitubercular drug discovery.
    Prasad MS; Bhole RP; Khedekar PB; Chikhale RV
    Bioorg Chem; 2021 Oct; 115():105242. PubMed ID: 34392175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovery of hydrazone containing thiadiazoles as Mycobacterium tuberculosis growth and enoyl acyl carrier protein reductase (InhA) inhibitors.
    Doğan H; Doğan ŞD; Gündüz MG; Krishna VS; Lherbet C; Sriram D; Şahin O; Sarıpınar E
    Eur J Med Chem; 2020 Feb; 188():112035. PubMed ID: 31951850
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A slow, tight binding inhibitor of InhA, the enoyl-acyl carrier protein reductase from Mycobacterium tuberculosis.
    Luckner SR; Liu N; am Ende CW; Tonge PJ; Kisker C
    J Biol Chem; 2010 May; 285(19):14330-7. PubMed ID: 20200152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure-Based Design and in Silico Screening of Virtual Combinatorial Library of Benzamides Inhibiting 2-trans Enoyl-Acyl Carrier Protein Reductase of
    Kouman KC; Keita M; Kre N'Guessan R; Owono Owono LC; Megnassan E; Frecer V; Miertus S
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554227
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and synthesis of 9H-fluorenone based 1,2,3-triazole analogues as Mycobacterium tuberculosis InhA inhibitors.
    Suresh A; Srinivasarao S; Agnieszka N; Ewa AK; Alvala M; Lherbet C; Chandra Sekhar KVG
    Chem Biol Drug Des; 2018 Jun; 91(6):1078-1086. PubMed ID: 29063733
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of 2-(4-oxoquinazolin-3(4H)-yl)acetamide derivatives as novel enoyl-acyl carrier protein reductase (InhA) inhibitors for the treatment of tuberculosis.
    Pedgaonkar GS; Sridevi JP; Jeankumar VU; Saxena S; Devi PB; Renuka J; Yogeeswari P; Sriram D
    Eur J Med Chem; 2014 Oct; 86():613-27. PubMed ID: 25218910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: toward the understanding of NADH-InhA different affinities.
    Schroeder EK; Basso LA; Santos DS; de Souza ON
    Biophys J; 2005 Aug; 89(2):876-84. PubMed ID: 15908576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and biological evaluation of phaitanthrin congeners as anti-mycobacterial agents.
    Kamal A; Reddy BV; Sridevi B; Ravikumar A; Venkateswarlu A; Sravanthi G; Sridevi JP; Yogeeswari P; Sriram D
    Bioorg Med Chem Lett; 2015 Sep; 25(18):3867-72. PubMed ID: 26253635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovery of New and Potent InhA Inhibitors as Antituberculosis Agents: Structure-Based Virtual Screening Validated by Biological Assays and X-ray Crystallography.
    Kamsri P; Hanwarinroj C; Phusi N; Pornprom T; Chayajarus K; Punkvang A; Suttipanta N; Srimanote P; Suttisintong K; Songsiriritthigul C; Saparpakorn P; Hannongbua S; Rattanabunyong S; Seetaha S; Choowongkomon K; Sureram S; Kittakoop P; Hongmanee P; Santanirand P; Chen Z; Zhu W; Blood RA; Takebayashi Y; Hinchliffe P; Mulholland AJ; Spencer J; Pungpo P
    J Chem Inf Model; 2020 Jan; 60(1):226-234. PubMed ID: 31820972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designing quinoline-isoniazid hybrids as potent anti-tubercular agents inhibiting mycolic acid biosynthesis.
    Alcaraz M; Sharma B; Roquet-Banères F; Conde C; Cochard T; Biet F; Kumar V; Kremer L
    Eur J Med Chem; 2022 Sep; 239():114531. PubMed ID: 35759907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor.
    Martínez-Hoyos M; Perez-Herran E; Gulten G; Encinas L; Álvarez-Gómez D; Alvarez E; Ferrer-Bazaga S; García-Pérez A; Ortega F; Angulo-Barturen I; Rullas-Trincado J; Blanco Ruano D; Torres P; Castañeda P; Huss S; Fernández Menéndez R; González Del Valle S; Ballell L; Barros D; Modha S; Dhar N; Signorino-Gelo F; McKinney JD; García-Bustos JF; Lavandera JL; Sacchettini JC; Jimenez MS; Martín-Casabona N; Castro-Pichel J; Mendoza-Losana A
    EBioMedicine; 2016 Jun; 8():291-301. PubMed ID: 27428438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mycobacterium tuberculosis enoyl-acyl carrier protein reductase inhibitors as potential antituberculotics: development in the past decade.
    Holas O; Ondrejcek P; Dolezal M
    J Enzyme Inhib Med Chem; 2015; 30(4):629-48. PubMed ID: 25383419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.