These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27301293)

  • 1. Glycosylphosphatidylinositol-Anchored Proteins as Regulators of Cortical Cytoskeleton.
    Sharonov GV; Balatskaya MN; Tkachuk VA
    Biochemistry (Mosc); 2016 Jun; 81(6):636-50. PubMed ID: 27301293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the organization of plasma membrane and its role in signal transduction.
    Suzuki KG
    Int Rev Cell Mol Biol; 2015; 317():67-96. PubMed ID: 26008784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endocytosis of glycosylphosphatidylinositol-anchored proteins.
    Lakhan SE; Sabharanjak S; De A
    J Biomed Sci; 2009 Oct; 16(1):93. PubMed ID: 19832981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrin Mechano-chemical Signaling Generates Plasma Membrane Nanodomains that Promote Cell Spreading.
    Kalappurakkal JM; Anilkumar AA; Patra C; van Zanten TS; Sheetz MP; Mayor S
    Cell; 2019 Jun; 177(7):1738-1756.e23. PubMed ID: 31104842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential insertion of GPI-anchored GFPs into lipid rafts of live cells.
    Legler DF; Doucey MA; Schneider P; Chapatte L; Bender FC; Bron C
    FASEB J; 2005 Jan; 19(1):73-5. PubMed ID: 15516372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPI-anchored proteins and lipid rafts.
    Sangiorgio V; Pitto M; Palestini P; Masserini M
    Ital J Biochem; 2004 Jul; 53(2):98-111. PubMed ID: 15646015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agrin triggers the clustering of raft-associated acetylcholine receptors through actin cytoskeleton reorganization.
    Cartaud A; Stetzkowski-Marden F; Maoui A; Cartaud J
    Biol Cell; 2011 Jun; 103(6):287-301. PubMed ID: 21524273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leukocyte adhesion and polarization: Role of glycosylphosphatidylinositol-anchored proteins.
    Richardson DD; Fernandez-Borja M
    Bioarchitecture; 2015; 5(5-6):61-9. PubMed ID: 26744925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycosylphosphatidylinositol-anchored proteins: Membrane organization and transport.
    Zurzolo C; Simons K
    Biochim Biophys Acta; 2016 Apr; 1858(4):632-9. PubMed ID: 26706096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actin cytoskeleton differently regulates cell surface organization of GPI-anchored proteins in polarized epithelial cells and fibroblasts.
    Lebreton S; Paladino S; Lelek M; Tramier M; Zimmer C; Zurzolo C
    Front Mol Biosci; 2024; 11():1360142. PubMed ID: 38774234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of lipid raft proteins by glimepiride- and insulin-induced glycosylphosphatidylinositol-specific phospholipase C in rat adipocytes.
    Müller G; Schulz A; Wied S; Frick W
    Biochem Pharmacol; 2005 Mar; 69(5):761-80. PubMed ID: 15710354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Glycosylphosphatidylinositol-Anchored Proteins in Synaptic Specification.
    Um JW; Ko J
    Trends Cell Biol; 2017 Dec; 27(12):931-945. PubMed ID: 28743494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of cross-linked glycosylphosphatidylinositol-anchored proteins to discrete actin-associated sites and cholesterol-dependent domains.
    Suzuki K; Sheetz MP
    Biophys J; 2001 Oct; 81(4):2181-9. PubMed ID: 11566789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycosylphosphatidylinositol-Anchored Proteins in
    Zhou K
    Front Plant Sci; 2019; 10():1022. PubMed ID: 31555307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal transduction by CD58: the transmembrane isoform transmits signals outside lipid rafts independently of the GPI-anchored isoform.
    Ariel O; Levi Y; Hollander N
    Cell Signal; 2009 Jul; 21(7):1100-8. PubMed ID: 19268704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of GPI-anchored protein LYPD1 as an essential factor for odontoblast differentiation in tooth development.
    Fu Y; Miyazaki K; Chiba Y; Funada K; Yuta T; Tian T; Mizuta K; Kawahara J; Zhang L; Martin D; Iwamoto T; Takahashi I; Fukumoto S; Yoshizaki K
    J Biol Chem; 2023 May; 299(5):104638. PubMed ID: 36963497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient GPI-anchored protein homodimers are units for raft organization and function.
    Suzuki KG; Kasai RS; Hirosawa KM; Nemoto YL; Ishibashi M; Miwa Y; Fujiwara TK; Kusumi A
    Nat Chem Biol; 2012 Sep; 8(9):774-83. PubMed ID: 22820419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization of GPI-anchored proteins at the cell surface and its physiopathological relevance.
    Lebreton S; Zurzolo C; Paladino S
    Crit Rev Biochem Mol Biol; 2018 Aug; 53(4):403-419. PubMed ID: 30040489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation.
    Delaguillaumie A; Harriague J; Kohanna S; Bismuth G; Rubinstein E; Seigneuret M; Conjeaud H
    J Cell Sci; 2004 Oct; 117(Pt 22):5269-82. PubMed ID: 15454569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: recent progress.
    Kinoshita T; Fujita M; Maeda Y
    J Biochem; 2008 Sep; 144(3):287-94. PubMed ID: 18635593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.