These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 27301326)

  • 1. Power Budget Analysis for Waveguide-Enhanced Raman Spectroscopy.
    Wang Z; Pearce SJ; Lin YC; Zervas MN; Bartlett PN; Wilkinson JS
    Appl Spectrosc; 2016 Aug; 70(8):1384-91. PubMed ID: 27301326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waveguide Enhanced Raman Spectroscopy for Biosensing: A Review.
    Ettabib MA; Marti A; Liu Z; Bowden BM; Zervas MN; Bartlett PN; Wilkinson JS
    ACS Sens; 2021 Jun; 6(6):2025-2045. PubMed ID: 34114813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy.
    Wang Z; Zervas MN; Bartlett PN; Wilkinson JS
    Opt Lett; 2016 Sep; 41(17):4146-9. PubMed ID: 27607994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized design for grating-coupled waveguide-enhanced Raman spectroscopy.
    Ettabib MA; Liu Z; Zervas MN; Wilkinson JS
    Opt Express; 2020 Dec; 28(25):37226-37235. PubMed ID: 33379561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides.
    Dhakal A; Subramanian AZ; Wuytens P; Peyskens F; Le Thomas N; Baets R
    Opt Lett; 2014 Jul; 39(13):4025-8. PubMed ID: 24978798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Waveguide-Enhanced Raman Spectroscopy (WERS): An Emerging Chip-Based Tool for Chemical and Biological Sensing.
    Wang P; Miller BL
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foundry-based waveguide-enhanced Raman spectroscopy in the visible.
    Tyndall NF; Emmons ED; Pruessner MW; Rabinovich WS; Wilcox PG; Tripathi A; Guicheteau JA; Stievater TH
    Opt Express; 2024 Feb; 32(4):4745-4755. PubMed ID: 38439219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grating-incoupled waveguide-enhanced Raman sensor.
    Ettabib MA; Bowden BM; Liu Z; Marti A; Churchill GM; Gates JC; Zervas MN; Bartlett PN; Wilkinson JS
    PLoS One; 2023; 18(8):e0284058. PubMed ID: 37561713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single mode waveguide platform for spontaneous and surface-enhanced on-chip Raman spectroscopy.
    Dhakal A; Peyskens F; Clemmen S; Raza A; Wuytens P; Zhao H; Le Thomas N; Baets R
    Interface Focus; 2016 Aug; 6(4):20160015. PubMed ID: 27499842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher order mode supercontinuum generation in tantalum pentoxide (Ta
    Fan R; Lin YY; Chang L; Boes A; Bowers J; Liu JW; Lin CH; Wang TK; Qiao J; Kuo HC; Lin GR; Shih MH; Hung YJ; Chiu YJ; Lee CK
    Sci Rep; 2021 Apr; 11(1):7978. PubMed ID: 33846403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Free-Space and Waveguide-Based SERS Platforms.
    Turk N; Raza A; Wuytens P; Demol H; Van Daele M; Detavernier C; Skirtach A; Gevaert K; Baets R
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31581547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A packaged, fiber-coupled waveguide-enhanced Raman spectroscopic sensor.
    Kita DM; Michon J; Hu J
    Opt Express; 2020 May; 28(10):14963-14972. PubMed ID: 32403528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstrating low Raman background in UV-written SiO
    Jensen MN; Gates JC; Flint AI; Hellesø OG
    Opt Express; 2023 Sep; 31(19):31092-31107. PubMed ID: 37710637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy.
    Dhakal A; Wuytens P; Raza A; Le Thomas N; Baets R
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waveguide-coupled directional Raman radiation for surface analysis.
    Chen C; Li JY; Wang L; Lu DF; Qi ZM
    Phys Chem Chem Phys; 2015 Sep; 17(33):21278-87. PubMed ID: 25662793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated Nanophotonic Waveguide-Based Devices for IR and Raman Gas Spectroscopy.
    Alberti S; Datta A; Jágerská J
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated Surface-Enhanced Raman Spectroscopy (SERS) Chip Based on a Total Reflection Liquid Core Waveguide.
    Lai C; Chen G; Chen L; Li J; Liu Q; Fang S
    Appl Spectrosc; 2017 Aug; 71(8):2021-2025. PubMed ID: 28555498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High index contrast photonic platforms for on-chip Raman spectroscopy.
    Raza A; Clemmen S; Wuytens P; de Goede M; Tong ASK; Le Thomas N; Liu C; Suntivich J; Skirtach AG; Garcia-Blanco SM; Blumenthal DJ; Wilkinson JS; Baets R
    Opt Express; 2019 Aug; 27(16):23067-23079. PubMed ID: 31510589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercontinuum generation in tantalum pentoxide waveguides for pump wavelengths in the 900 nm to 1500 nm spectral region.
    Woods JRC; Daykin J; Tong ASK; Lacava C; Petropoulos P; Tropper AC; Horak P; Wilkinson JS; Apostolopoulos V
    Opt Express; 2020 Oct; 28(21):32173-32184. PubMed ID: 33115180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact integrated optical system for a tip-enhanced Raman spectrometer.
    Tang M; Xianguang F; Wang X; He J; He H; Hu X
    Appl Opt; 2017 May; 56(13):3639-3645. PubMed ID: 28463248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.