These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27301327)

  • 1. Plume Dynamics of Laser-Produced Swine Muscle Tissue Plasma.
    Camacho JJ; Diaz L; Marin-Roldan A; Moncayo S; Caceres JO
    Appl Spectrosc; 2016 Jul; 70(7):1228-38. PubMed ID: 27301327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-generated plasma plume expansion: combined continuous-microscopic modeling.
    Itina TE; Hermann J; Delaporte P; Sentis M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066406. PubMed ID: 12513411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea.
    Bor Z; Hopp B; Rácz B; Szabó G; Ratkay I; Süveges I; Füst A; Mohay J
    Refract Corneal Surg; 1993; 9(2 Suppl):S111-5. PubMed ID: 8499358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure effects in laser-induced plasmas of trinitrotoluene and pyrene by laser-induced breakdown spectroscopy (LIBS).
    Delgado T; Vadillo JM; Laserna JJ
    Appl Spectrosc; 2014; 68(1):33-8. PubMed ID: 24405951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed camera imaging for laser ablation process: for further reliable elemental analysis using inductively coupled plasma-mass spectrometry.
    Hirata T; Miyazaki Z
    Anal Chem; 2007 Jan; 79(1):147-52. PubMed ID: 17194132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on infrared laser desorption of solid matrix using scanning electron microscope and fast photography.
    Fan X; Wang SZ; Zheng AL; Wei XY; Zhao YP; Zong ZM; Zhao W
    Microsc Res Tech; 2013 Jul; 76(7):744-50. PubMed ID: 23650075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of ambient gas pressure on excitation radiation mechanism in pulsed laser ablation of copper].
    Huang QJ; Fang ET
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):585-8. PubMed ID: 19455778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ analysis of metal melts in metallurgic vacuum devices by laser-induced breakdown spectroscopy.
    Gruber J; Heitz J; Arnold N; Bäuerle D; Ramaseder N; Meyer W; Hochörtler J; Koch F
    Appl Spectrosc; 2004 Apr; 58(4):457-62. PubMed ID: 17140495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of laser-ablated carbon plasma: formation of C2 and CN.
    Kushwaha A; Thareja RK
    Appl Opt; 2008 Nov; 47(31):G65-71. PubMed ID: 19122704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of plasmas produced by laser ablation using single and double pulses for food analysis demonstrated by probing potato skins.
    Beldjilali S; Yip WL; Hermann J; Baba-Hamed T; Belasri A
    Anal Bioanal Chem; 2011 Jun; 400(7):2173-83. PubMed ID: 21461618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-induced plasma imaging for low-pressure detection.
    Yuan H; Gornushkin IB; Gojani AB; Wang XH; Rong MZ
    Opt Express; 2018 Jun; 26(12):15962-15971. PubMed ID: 30114849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Emission Studies of Copper Plasma Induced Using Infrared Transversely Excited Atmospheric (IR TEA) Carbon Dioxide Laser Pulses.
    Momcilovic M; Kuzmanovic M; Rankovic D; Ciganovic J; Stoiljkovic M; Savovic J; Trtica M
    Appl Spectrosc; 2015 Apr; 69(4):419-29. PubMed ID: 25741748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shock Wave Mediated Plume Chemistry for Molecular Formation in Laser Ablation Plasmas.
    Harilal SS; Brumfield BE; Cannon BD; Phillips MC
    Anal Chem; 2016 Feb; 88(4):2296-302. PubMed ID: 26732866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium Chloride Diffusion during Muscle Salting Evidenced by Energy-Dispersive X-ray Spectroscopy Imaging.
    Filgueras R; Peyrin F; Vénien A; Hénot JM; Astruc T
    J Agric Food Chem; 2016 Jan; 64(3):699-705. PubMed ID: 26727622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-critical phase explosion promoting breakdown plasma ignition during laser ablation of graphite.
    Ionin AA; Kudryashov SI; Seleznev LV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016404. PubMed ID: 20866744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel.
    Hou H; Yang B; Mao X; Zorba V; Ran P; Russo RE
    Opt Express; 2018 May; 26(10):13425-13435. PubMed ID: 29801368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early plume expansion in atmospheric pressure midinfrared laser ablation of water-rich targets.
    Chen Z; Vertes A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036316. PubMed ID: 18517520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological and atomic analytical changes after CO2 laser irradiation emitted at 9.3 microns on human dental hard tissues.
    Takahashi K; Kimura Y; Matsumoto K
    J Clin Laser Med Surg; 1998 Jun; 16(3):167-73. PubMed ID: 9743655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of excimer laser (308 nm) ablation of the human lens nucleus in air and saline with a fiber optic delivery system.
    Martinez M; Maguen E; Bardenstein D; Duffy M; Yoser S; Papaioannou T; Grundfest W
    Refract Corneal Surg; 1992; 8(5):368-74. PubMed ID: 1450118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser-assisted plasma formation and ablation of Cu in a controlled environment.
    Bashir S; Dawood A; Hayat A; Askar S; Ahmad Z; Ahmad H; Khan MA
    Heliyon; 2023 Aug; 9(8):e18781. PubMed ID: 37593619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.