These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27301353)

  • 1. Tracking the will to attend: Cortical activity indexes self-generated, voluntary shifts of attention.
    Gmeindl L; Chiu YC; Esterman MS; Greenberg AS; Courtney SM; Yantis S
    Atten Percept Psychophys; 2016 Oct; 78(7):2176-84. PubMed ID: 27301353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A parametric fMRI study of overt and covert shifts of visuospatial attention.
    Beauchamp MS; Petit L; Ellmore TM; Ingeholm J; Haxby JV
    Neuroimage; 2001 Aug; 14(2):310-21. PubMed ID: 11467905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of attention shifts between vision and audition in human cortex.
    Shomstein S; Yantis S
    J Neurosci; 2004 Nov; 24(47):10702-6. PubMed ID: 15564587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls.
    Gitelman DR; Nobre AC; Parrish TB; LaBar KS; Kim YH; Meyer JR; Mesulam M
    Brain; 1999 Jun; 122 ( Pt 6)():1093-106. PubMed ID: 10356062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional dissociation of the inferior frontal junction from the dorsal attention network in top-down attentional control.
    Tamber-Rosenau BJ; Asplund CL; Marois R
    J Neurophysiol; 2018 Nov; 120(5):2498-2512. PubMed ID: 30156458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional connectivity of dorsal and ventral frontoparietal seed regions during auditory orienting.
    Rossi S; Huang S; Furtak SC; Belliveau JW; Ahveninen J
    Brain Res; 2014 Oct; 1583():159-68. PubMed ID: 25128464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity.
    Meyer KN; Du F; Parks E; Hopfinger JB
    Neuropsychologia; 2018 Mar; 111():307-316. PubMed ID: 29425803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diurnal patterns of activity of the orienting and executive attention neuronal networks in subjects performing a Stroop-like task: a functional magnetic resonance imaging study.
    Marek T; Fafrowicz M; Golonka K; Mojsa-Kaja J; Oginska H; Tucholska K; Urbanik A; Beldzik E; Domagalik A
    Chronobiol Int; 2010 Jul; 27(5):945-58. PubMed ID: 20636208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control networks and hemispheric asymmetries in parietal cortex during attentional orienting in different spatial reference frames.
    Wilson KD; Woldorff MG; Mangun GR
    Neuroimage; 2005 Apr; 25(3):668-83. PubMed ID: 15808968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deciding where to attend: Large-scale network mechanisms underlying attention and intention revealed by graph-theoretic analysis.
    Liu Y; Hong X; Bengson JJ; Kelley TA; Ding M; Mangun GR
    Neuroimage; 2017 Aug; 157():45-60. PubMed ID: 28554849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of parietal cortex during sustained visual spatial attention.
    Thakral PP; Slotnick SD
    Brain Res; 2009 Dec; 1302():157-66. PubMed ID: 19765554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neural mechanisms of top-down attentional control.
    Hopfinger JB; Buonocore MH; Mangun GR
    Nat Neurosci; 2000 Mar; 3(3):284-91. PubMed ID: 10700262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional connectivity indicates differential roles for the intraparietal sulcus and the superior parietal lobule in multiple object tracking.
    Alnæs D; Sneve MH; Richard G; Skåtun KC; Kaufmann T; Nordvik JE; Andreassen OA; Endestad T; Laeng B; Westlye LT
    Neuroimage; 2015 Dec; 123():129-37. PubMed ID: 26299796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural mechanisms underlying conscious and unconscious attentional shifts triggered by eye gaze.
    Sato W; Kochiyama T; Uono S; Toichi M
    Neuroimage; 2016 Jan; 124(Pt A):118-126. PubMed ID: 26343316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of spatial and feature-based attention in frontoparietal cortex.
    Greenberg AS; Esterman M; Wilson D; Serences JT; Yantis S
    J Neurosci; 2010 Oct; 30(43):14330-9. PubMed ID: 20980588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical mechanisms of cognitive control for shifting attention in vision and working memory.
    Tamber-Rosenau BJ; Esterman M; Chiu YC; Yantis S
    J Cogn Neurosci; 2011 Oct; 23(10):2905-19. PubMed ID: 21291314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heightened activity in a key region of the ventral attention network is linked to reduced activity in a key region of the dorsal attention network during unexpected shifts of covert visual spatial attention.
    Weissman DH; Prado J
    Neuroimage; 2012 Jul; 61(4):798-804. PubMed ID: 22445785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The planning of action: can one separate attention from intention?].
    Boussaoud D
    Med Sci (Paris); 2003 May; 19(5):583-91. PubMed ID: 12836392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical regions involved in eye movements, shifts of attention, and gaze perception.
    Grosbras MH; Laird AR; Paus T
    Hum Brain Mapp; 2005 May; 25(1):140-54. PubMed ID: 15846814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex.
    Vossel S; Thiel CM; Fink GR
    Neuroimage; 2006 Sep; 32(3):1257-64. PubMed ID: 16846742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.