BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27301421)

  • 1. Possible Involvement of MYB44-Mediated Stomatal Regulation in Systemic Resistance Induced by Penicillium simplicissimum GP17-2 in Arabidopsis.
    Hieno A; Naznin HA; Hyakumachi M; Higuchi-Takeuchi M; Matsui M; Yamamoto YY
    Microbes Environ; 2016 Jun; 31(2):154-9. PubMed ID: 27301421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals.
    Hossain MM; Sultana F; Kubota M; Koyama H; Hyakumachi M
    Plant Cell Physiol; 2007 Dec; 48(12):1724-36. PubMed ID: 17956859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000.
    Desclos-Theveniau M; Arnaud D; Huang TY; Lin GJ; Chen WY; Lin YC; Zimmerli L
    PLoS Pathog; 2012 Feb; 8(2):e1002513. PubMed ID: 22346749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of systemic resistance in Arabidopsis thaliana in response to a culture filtrate from a plant growth-promoting fungus, Phoma sp. GS8-3.
    Sultana F; Hossain MM; Kubota M; Hyakumachi M
    Plant Biol (Stuttg); 2009 Jan; 11(1):97-104. PubMed ID: 19121119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of the salicylic acid signaling pathway in the systemic resistance induced in Arabidopsis by plant growth-promoting fungus Fusarium equiseti GF19-1.
    Kojima H; Hossain MM; Kubota M; Hyakumachi M
    J Oleo Sci; 2013; 62(6):415-26. PubMed ID: 23728333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic variation for induced and basal resistance against leaf pathogen Pseudomonas syringae pv. tomato DC3000 among Arabidopsis thaliana accessions.
    Hossain MM; Sultana F
    Springerplus; 2015; 4():296. PubMed ID: 26140260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PAMP-induced peptide 1 cooperates with salicylic acid to regulate stomatal immunity in
    Hou S; Shen H; Shao H
    Plant Signal Behav; 2019; 14(11):1666657. PubMed ID: 31526105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AtGAP1 Promotes the Resistance to
    Cheng SS; Ku YS; Cheung MY; Lam HM
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35886893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of defense responses in cucumber plants by using the cell-free filtrate of the plant growth-promoting fungus Penicillium simplicissimum GP17-2.
    Shimizu K; Hossain MM; Kato K; Kubota M; Hyakumachi M
    J Oleo Sci; 2013; 62(8):613-21. PubMed ID: 23985491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000.
    Zeng W; Brutus A; Kremer JM; Withers JC; Gao X; Jones AD; He SY
    PLoS Pathog; 2011 Oct; 7(10):e1002291. PubMed ID: 21998587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common and unique Arabidopsis proteins involved in stomatal susceptibility to Salmonella enterica and Pseudomonas syringae.
    Rodrigues Oblessuc P; Vaz Bisneta M; Melotto M
    FEMS Microbiol Lett; 2019 Aug; 366(16):. PubMed ID: 31529017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription factors WRKY70 and WRKY11 served as regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis.
    Jiang CH; Huang ZY; Xie P; Gu C; Li K; Wang DC; Yu YY; Fan ZH; Wang CJ; Wang YP; Guo YH; Guo JH
    J Exp Bot; 2016 Jan; 67(1):157-74. PubMed ID: 26433201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Priming for enhanced defence responses by specific inhibition of the Arabidopsis response to coronatine.
    Tsai CH; Singh P; Chen CW; Thomas J; Weber J; Mauch-Mani B; Zimmerli L
    Plant J; 2011 Feb; 65(3):469-79. PubMed ID: 21265899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethylene Response Factor ERF11 Activates
    Zheng X; Xing J; Zhang K; Pang X; Zhao Y; Wang G; Zang J; Huang R; Dong J
    Plant Physiol; 2019 Jun; 180(2):1132-1151. PubMed ID: 30926656
    [No Abstract]   [Full Text] [Related]  

  • 15. Enhanced Resistance of
    Nabi RBS; Rolly NK; Tayade R; Khan M; Shahid M; Yun BW
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IDL6-HAE/HSL2 impacts pectin degradation and resistance to Pseudomonas syringae pv tomato DC3000 in Arabidopsis leaves.
    Wang X; Hou S; Wu Q; Lin M; Acharya BR; Wu D; Zhang W
    Plant J; 2017 Jan; 89(2):250-263. PubMed ID: 27618493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Omics Revealed Molecular Mechanisms Underlying Guard Cell Systemic Acquired Resistance.
    David L; Kang J; Dufresne D; Zhu D; Chen S
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33375472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana.
    Pozo MJ; Van Der Ent S; Van Loon LC; Pieterse CMJ
    New Phytol; 2008; 180(2):511-523. PubMed ID: 18657213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cell-type specific role of Arabidopsis bZIP59 transcription factor in plant immunity.
    Song Z; Zhang C; Jin P; Tetteh C; Dong X; Luo S; Zhang S; Li X; Liu Y; Zhang H
    Plant Cell Environ; 2022 Jun; 45(6):1843-1861. PubMed ID: 35199374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Pseudomonas syringae pv. tomato type III effector HopM1 suppresses Arabidopsis defenses independent of suppressing salicylic acid signaling and of targeting AtMIN7.
    Gangadharan A; Sreerekha MV; Whitehill J; Ham JH; Mackey D
    PLoS One; 2013; 8(12):e82032. PubMed ID: 24324742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.