These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 27301535)

  • 1. Cellulose Aggregation under Hydrothermal Pretreatment Conditions.
    Silveira RL; Stoyanov SR; Kovalenko A; Skaf MS
    Biomacromolecules; 2016 Aug; 17(8):2582-90. PubMed ID: 27301535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local Phase Separation of Co-solvents Enhances Pretreatment of Biomass for Bioenergy Applications.
    Mostofian B; Cai CM; Smith MD; Petridis L; Cheng X; Wyman CE; Smith JC
    J Am Chem Soc; 2016 Aug; 138(34):10869-78. PubMed ID: 27482599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of cellulose solvation in water and the ionic liquid 1-butyl-3-methylimidazolim chloride.
    Gross AS; Bell AT; Chu JW
    J Phys Chem B; 2011 Nov; 115(46):13433-40. PubMed ID: 21950594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric Interfacial Layer of Modified Cellulose Nanocrystals in Aqueous Electrolyte Solution: Predictions by the Molecular Theory of Solvation.
    Lyubimova O; Stoyanov SR; Gusarov S; Kovalenko A
    Langmuir; 2015 Jun; 31(25):7106-16. PubMed ID: 26053228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production.
    Gu T; Held MA; Faik A
    Environ Technol; 2013; 34(13-16):1735-49. PubMed ID: 24350431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The solvation structures of cellulose microfibrils in ionic liquids.
    Mostofian B; Smith JC; Cheng X
    Interdiscip Sci; 2011 Dec; 3(4):308-20. PubMed ID: 22179764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Insights into the Role of Water in the Dissolution of Cellulose Using IL/Water Mixed Solvent Systems.
    Parthasarathi R; Balamurugan K; Shi J; Subramanian V; Simmons BA; Singh S
    J Phys Chem B; 2015 Nov; 119(45):14339-49. PubMed ID: 26407132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils.
    Gross AS; Chu JW
    J Phys Chem B; 2010 Oct; 114(42):13333-41. PubMed ID: 20883004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoting Effect of Sodium Chloride on the Solubilization and Depolymerization of Cellulose from Raw Biomass Materials in Water.
    Jiang Z; Yi J; Li J; He T; Hu C
    ChemSusChem; 2015 Jun; 8(11):1901-7. PubMed ID: 25916895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Xylan Side-Chain Substitutions on Xylan-Cellulose Interactions and Implications for Thermal Pretreatment of Cellulosic Biomass.
    Pereira CS; Silveira RL; Dupree P; Skaf MS
    Biomacromolecules; 2017 Apr; 18(4):1311-1321. PubMed ID: 28252951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water.
    Wang Y; Deng W; Wang B; Zhang Q; Wan X; Tang Z; Wang Y; Zhu C; Cao Z; Wang G; Wan H
    Nat Commun; 2013; 4():2141. PubMed ID: 23846730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose.
    Ko JK; Kim Y; Ximenes E; Ladisch MR
    Biotechnol Bioeng; 2015 Feb; 112(2):252-62. PubMed ID: 25082660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid hot water pretreatment of cellulosic biomass.
    Kim Y; Hendrickson R; Mosier NS; Ladisch MR
    Methods Mol Biol; 2009; 581():93-102. PubMed ID: 19768618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process.
    Nitsos CK; Matis KA; Triantafyllidis KS
    ChemSusChem; 2013 Jan; 6(1):110-22. PubMed ID: 23180649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant biomass recalcitrance: effect of hemicellulose composition on nanoscale forces that control cell wall strength.
    Silveira RL; Stoyanov SR; Gusarov S; Skaf MS; Kovalenko A
    J Am Chem Soc; 2013 Dec; 135(51):19048-51. PubMed ID: 24274712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels.
    Zhou CH; Xia X; Lin CX; Tong DS; Beltramini J
    Chem Soc Rev; 2011 Nov; 40(11):5588-617. PubMed ID: 21863197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic Solvent Effects in Biomass Conversion Reactions.
    Shuai L; Luterbacher J
    ChemSusChem; 2016 Jan; 9(2):133-55. PubMed ID: 26676907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of solvents for cellulose dissolution.
    Ghasemi M; Tsianou M; Alexandridis P
    Bioresour Technol; 2017 Mar; 228():330-338. PubMed ID: 28086174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular Interactions in Secondary Plant Cell Walls: Effect of Lignin Chemical Composition Revealed with the Molecular Theory of Solvation.
    Silveira RL; Stoyanov SR; Gusarov S; Skaf MS; Kovalenko A
    J Phys Chem Lett; 2015 Jan; 6(1):206-11. PubMed ID: 26263115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review.
    Zhang K; Pei Z; Wang D
    Bioresour Technol; 2016 Jan; 199():21-33. PubMed ID: 26343573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.