BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27301699)

  • 1. Structure-mechanical property correlations of hydrogel forming β-sheet peptides.
    De Leon Rodriguez LM; Hemar Y; Cornish J; Brimble MA
    Chem Soc Rev; 2016 Aug; 45(17):4797-824. PubMed ID: 27301699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the metal mediated assembly and hydrogel formation of a β-hairpin peptide.
    De Leon-Rodriguez LM; Hemar Y; Mitra AK; Brimble MA
    Biomater Sci; 2017 Sep; 5(10):1993-1997. PubMed ID: 28853745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of β-Sheet Forming Peptide Hydrophobic Face: Effect on Self-Assembly and Gelation.
    Elsawy MA; Smith AM; Hodson N; Squires A; Miller AF; Saiani A
    Langmuir; 2016 May; 32(19):4917-23. PubMed ID: 27089379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular structure of monomorphic peptide fibrils within a kinetically trapped hydrogel network.
    Nagy-Smith K; Moore E; Schneider J; Tycko R
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9816-21. PubMed ID: 26216960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides.
    Roberts D; Rochas C; Saiani A; Miller AF
    Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A General Method to Prepare Peptide-Based Supramolecular Hydrogels.
    Yuan D; Shi J; Zhou N; Xu B
    Methods Mol Biol; 2018; 1777():175-180. PubMed ID: 29744834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating Supramolecular Peptide Hydrogel Viscoelasticity Using Biomolecular Recognition.
    DiMaio JTM; Doran TM; Ryan DM; Raymond DM; Nilsson BL
    Biomacromolecules; 2017 Nov; 18(11):3591-3599. PubMed ID: 28872306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Assembling Multidomain Peptide Nanofibers for Delivery of Bioactive Molecules and Tissue Regeneration.
    Moore AN; Hartgerink JD
    Acc Chem Res; 2017 Apr; 50(4):714-722. PubMed ID: 28191928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanical stimulation of cells in 3D culture within a self-assembling peptide hydrogel.
    Nagai Y; Yokoi H; Kaihara K; Naruse K
    Biomaterials; 2012 Feb; 33(4):1044-51. PubMed ID: 22056753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Tough, Stretchable, and Enzymatically Degradable Hydrogels Modulated by Bioinspired Hydrophobic β-Sheet Peptides.
    Xiang Y; Zhang J; Mao H; Yan Z; Wang X; Bao C; Zhu L
    Biomacromolecules; 2021 Nov; 22(11):4846-4856. PubMed ID: 34706536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling Self-Assembling Peptide Hydrogel Properties through Network Topology.
    Gao J; Tang C; Elsawy MA; Smith AM; Miller AF; Saiani A
    Biomacromolecules; 2017 Mar; 18(3):826-834. PubMed ID: 28068466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doubling the cross-linking interface of a rationally designed beta roll peptide for calcium-dependent proteinaceous hydrogel formation.
    Dooley K; Bulutoglu B; Banta S
    Biomacromolecules; 2014 Oct; 15(10):3617-24. PubMed ID: 25226243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversibly tuning the mechanical properties of a DNA hydrogel by a DNA nanomotor.
    Zhou X; Li C; Shao Y; Chen C; Yang Z; Liu D
    Chem Commun (Camb); 2016 Aug; 52(70):10668-71. PubMed ID: 27506763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the Landscape of the Pauling-Corey Rippled Sheet: An Orphaned Motif Finding New Homes.
    Raskatov JA; Schneider JP; Nilsson BL
    Acc Chem Res; 2021 May; 54(10):2488-2501. PubMed ID: 33901396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterning of Structurally Anisotropic Composite Hydrogel Sheets.
    Prince E; Alizadehgiashi M; Campbell M; Khuu N; Albulescu A; De France K; Ratkov D; Li Y; Hoare T; Kumacheva E
    Biomacromolecules; 2018 Apr; 19(4):1276-1284. PubMed ID: 29505709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of a zwitterionic hydrogel blend with low coefficient of friction.
    Osaheni AO; Finkelstein EB; Mather PT; Blum MM
    Acta Biomater; 2016 Dec; 46():245-255. PubMed ID: 27650587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo design of strand-swapped beta-hairpin hydrogels.
    Nagarkar RP; Hule RA; Pochan DJ; Schneider JP
    J Am Chem Soc; 2008 Apr; 130(13):4466-74. PubMed ID: 18335936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of amphipathic β-sheet peptides: insights and applications.
    Bowerman CJ; Nilsson BL
    Biopolymers; 2012; 98(3):169-84. PubMed ID: 22782560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkene-Azide 1,3-Dipolar Cycloaddition as a Trigger for Ultrashort Peptide Hydrogel Dissolution.
    Dadhwal S; Fairhall JM; Goswami SK; Hook S; Gamble AB
    Chem Asian J; 2019 Apr; 14(8):1143-1150. PubMed ID: 30324726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Sheet-Edge Interactions in β-sheet Self-Assembling Peptide Hydrogels.
    Wychowaniec JK; Smith AM; Ligorio C; Mykhaylyk OO; Miller AF; Saiani A
    Biomacromolecules; 2020 Jun; 21(6):2285-2297. PubMed ID: 32275138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.