These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27301699)

  • 21. Multifunctional thermoresponsive designer peptide hydrogels.
    De Leon-Rodriguez LM; Hemar Y; Mo G; Mitra AK; Cornish J; Brimble MA
    Acta Biomater; 2017 Jan; 47():40-49. PubMed ID: 27744067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aromatic-Aromatic Interactions Enable α-Helix to β-Sheet Transition of Peptides to Form Supramolecular Hydrogels.
    Li J; Du X; Hashim S; Shy A; Xu B
    J Am Chem Soc; 2017 Jan; 139(1):71-74. PubMed ID: 27997165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pH-sensitive peptide hydrogel for glucose-responsive insulin delivery.
    Li X; Fu M; Wu J; Zhang C; Deng X; Dhinakar A; Huang W; Qian H; Ge L
    Acta Biomater; 2017 Mar; 51():294-303. PubMed ID: 28069504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrastable Supramolecular Hydrogel of Hydrophobic Peptides Prepared by a Hydrolysis Process.
    Shi Y
    J Biomed Nanotechnol; 2018 Feb; 14(2):389-395. PubMed ID: 31352935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Sheet-Edge Interactions in β-sheet Self-Assembling Peptide Hydrogels.
    Wychowaniec JK; Smith AM; Ligorio C; Mykhaylyk OO; Miller AF; Saiani A
    Biomacromolecules; 2020 Jun; 21(6):2285-2297. PubMed ID: 32275138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Synergistic Effect of Cationic Moieties and GRGDSF-Peptides in Hydrogels on Neural Stem Cell Behavior.
    Sallouh M; Jarocki M; Sallouh O; Degen P; Faissner A; Weberskirch R
    Macromol Biosci; 2017 Mar; 17(3):. PubMed ID: 27748556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparisons of β-Hairpin Propensity Among Peptides with Homochiral or Heterochiral Strands.
    Liu X; Gellman SH
    Chembiochem; 2021 Sep; 22(18):2772-2776. PubMed ID: 34288305
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity.
    Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL
    Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Designing Peptide/Graphene Hybrid Hydrogels through Fine-Tuning of Molecular Interactions.
    Wychowaniec JK; Iliut M; Zhou M; Moffat J; Elsawy MA; Pinheiro WA; Hoyland JA; Miller AF; Vijayaraghavan A; Saiani A
    Biomacromolecules; 2018 Jul; 19(7):2731-2741. PubMed ID: 29672029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequence-Dependent Structural Stability of Self-Assembled Cylindrical Nanofibers by Peptide Amphiphiles.
    Fu IW; Nguyen HD
    Biomacromolecules; 2015 Jul; 16(7):2209-19. PubMed ID: 26068113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A de novo self-assembling peptide hydrogel biosensor with covalently immobilised DNA-recognising motifs.
    King PJ; Saiani A; Bichenkova EV; Miller AF
    Chem Commun (Camb); 2016 May; 52(40):6697-700. PubMed ID: 27117274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications.
    Fichman G; Gazit E
    Acta Biomater; 2014 Apr; 10(4):1671-82. PubMed ID: 23958781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Post-assembly α-helix to β-sheet structural transformation within SAF-p1/p2a peptide nanofibers.
    Roberts EK; Wong KM; Lee EJ; Le MM; Patel DM; Paravastu AK
    Soft Matter; 2018 Nov; 14(44):8986-8996. PubMed ID: 30375627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Is a cross-β-sheet structure of low molecular weight peptides necessary for the formation of fibrils and peptide hydrogels?
    Ilawe NV; Schweitzer-Stenner R; DiGuiseppi D; Wong BM
    Phys Chem Chem Phys; 2018 Jul; 20(27):18158-18168. PubMed ID: 29696249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthetic β-Barrel by Metal-Induced Folding and Assembly.
    Yamagami M; Sawada T; Fujita M
    J Am Chem Soc; 2018 Jul; 140(28):8644-8647. PubMed ID: 29975527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogel Tethering Enhances Interdomain Stabilization of Single-Chain Antibodies.
    Xiong Y; Ford NR; Hecht KA; Roesijadi G; Squier TC
    Bioconjug Chem; 2017 Nov; 28(11):2804-2814. PubMed ID: 28930443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning gelation kinetics and mechanical rigidity of β-hairpin peptide hydrogels via hydrophobic amino acid substitutions.
    Chen C; Gu Y; Deng L; Han S; Sun X; Chen Y; Lu JR; Xu H
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14360-8. PubMed ID: 25087842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery.
    Lin P; Ma S; Wang X; Zhou F
    Adv Mater; 2015 Mar; 27(12):2054-9. PubMed ID: 25677412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polymorphism in self-assembly of peptide-based β-hairpin contributes to network morphology and hydrogel mechanical rigidity.
    Miller Y; Ma B; Nussinov R
    J Phys Chem B; 2015 Jan; 119(2):482-90. PubMed ID: 25545881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A recipe for designing water-soluble, beta-sheet-forming peptides.
    Mayo KH; Ilyina E; Park H
    Protein Sci; 1996 Jul; 5(7):1301-15. PubMed ID: 8819163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.