BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 27301885)

  • 21. Substantial differences in bias between single-digest and double-digest RAD-seq libraries: A case study.
    Flanagan SP; Jones AG
    Mol Ecol Resour; 2018 Mar; 18(2):264-280. PubMed ID: 29120082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genotyping-in-Thousands by sequencing (GT-seq): A cost effective SNP genotyping method based on custom amplicon sequencing.
    Campbell NR; Harmon SA; Narum SR
    Mol Ecol Resour; 2015 Jul; 15(4):855-67. PubMed ID: 25476721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of the genetic diversity of influenza A viruses using next-generation DNA sequencing.
    Van den Hoecke S; Verhelst J; Vuylsteke M; Saelens X
    BMC Genomics; 2015 Feb; 16(1):79. PubMed ID: 25758772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Population genomic analyses from low-coverage RAD-Seq data: a case study on the non-model cucurbit bottle gourd.
    Xu P; Xu S; Wu X; Tao Y; Wang B; Wang S; Qin D; Lu Z; Li G
    Plant J; 2014 Feb; 77(3):430-42. PubMed ID: 24320550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sanger Confirmation Is Required to Achieve Optimal Sensitivity and Specificity in Next-Generation Sequencing Panel Testing.
    Mu W; Lu HM; Chen J; Li S; Elliott AM
    J Mol Diagn; 2016 Nov; 18(6):923-932. PubMed ID: 27720647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of an amplicon-based next-generation sequencing panel for detection of BRCA1 and BRCA2 genetic variants.
    Shin S; Hwang IS; Lee ST; Choi JR
    Breast Cancer Res Treat; 2016 Aug; 158(3):433-40. PubMed ID: 27383479
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Introduction of the Python script STRinNGS for analysis of STR regions in FASTQ or BAM files and expansion of the Danish STR sequence database to 11 STRs.
    Friis SL; Buchard A; Rockenbauer E; Børsting C; Morling N
    Forensic Sci Int Genet; 2016 Mar; 21():68-75. PubMed ID: 26722765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of High-Throughput Next-Generation Sequencing for HLA Typing on Buccal Extracted DNA: Results from over 10,000 Donor Recruitment Samples.
    Yin Y; Lan JH; Nguyen D; Valenzuela N; Takemura P; Bolon YT; Springer B; Saito K; Zheng Y; Hague T; Pasztor A; Horvath G; Rigo K; Reed EF; Zhang Q
    PLoS One; 2016; 11(10):e0165810. PubMed ID: 27798706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Method for Next-Generation Sequencing of Paired Diagnostic and Remission Samples to Detect Mitochondrial DNA Mutations Associated with Leukemia.
    Pagani IS; Kok CH; Saunders VA; Van der Hoek MB; Heatley SL; Schwarer AP; Hahn CN; Hughes TP; White DL; Ross DM
    J Mol Diagn; 2017 Sep; 19(5):711-721. PubMed ID: 28732215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validation of SNP allele frequencies determined by pooled next-generation sequencing in natural populations of a non-model plant species.
    Rellstab C; Zoller S; Tedder A; Gugerli F; Fischer MC
    PLoS One; 2013; 8(11):e80422. PubMed ID: 24244686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. KATK: Fast genotyping of rare variants directly from unmapped sequencing reads.
    Kaplinski L; Möls M; Puurand T; Pajuste FD; Remm M
    Hum Mutat; 2021 Jun; 42(6):777-786. PubMed ID: 33715282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection and removal of PCR duplicates in population genomic ddRAD studies by addition of a degenerate base region (DBR) in sequencing adapters.
    Schweyen H; Rozenberg A; Leese F
    Biol Bull; 2014 Oct; 227(2):146-60. PubMed ID: 25411373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amplification of overlapping DNA amplicons in a single-tube multiplex PCR for targeted next-generation sequencing of BRCA1 and BRCA2.
    Schenk D; Song G; Ke Y; Wang Z
    PLoS One; 2017; 12(7):e0181062. PubMed ID: 28704513
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Illumina-solexa sequencing protocol for bacterial genomes.
    Hu Z; Cheng L; Wang H
    Methods Mol Biol; 2015; 1231():91-7. PubMed ID: 25343860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics.
    Sikkema-Raddatz B; Johansson LF; de Boer EN; Almomani R; Boven LG; van den Berg MP; van Spaendonck-Zwarts KY; van Tintelen JP; Sijmons RH; Jongbloed JD; Sinke RJ
    Hum Mutat; 2013 Jul; 34(7):1035-42. PubMed ID: 23568810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Massively parallel and multiplex blood group genotyping using next-generation-sequencing.
    Boccoz SA; Fouret J; Roche M; Lachuer J; Legras-Lachuer C; Corgier BP; Marquette CA
    Clin Biochem; 2018 Sep; 60():71-76. PubMed ID: 30092181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diagnostic validation of a familial hypercholesterolaemia cohort provides a model for using targeted next generation DNA sequencing in the clinical setting.
    Hinchcliffe M; Le H; Fimmel A; Molloy L; Freeman L; Sullivan D; Trent RJ
    Pathology; 2014 Jan; 46(1):60-8. PubMed ID: 24300713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Library preparation methods for next-generation sequencing: tone down the bias.
    van Dijk EL; Jaszczyszyn Y; Thermes C
    Exp Cell Res; 2014 Mar; 322(1):12-20. PubMed ID: 24440557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform.
    de Muinck EJ; Trosvik P; Gilfillan GD; Hov JR; Sundaram AYM
    Microbiome; 2017 Jul; 5(1):68. PubMed ID: 28683838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-depth genotyping-by-sequencing (GBS) in a bovine population: strategies to maximize the selection of high quality genotypes and the accuracy of imputation.
    Brouard JS; Boyle B; Ibeagha-Awemu EM; Bissonnette N
    BMC Genet; 2017 Apr; 18(1):32. PubMed ID: 28381212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.