These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 27301982)
1. In Silico Testing of an Artificial-Intelligence-Based Artificial Pancreas Designed for Use in the Intensive Care Unit Setting. DeJournett L; DeJournett J J Diabetes Sci Technol; 2016 Nov; 10(6):1360-1371. PubMed ID: 27301982 [TBL] [Abstract][Full Text] [Related]
2. Comparative Simulation Study of Glucose Control Methods Designed for Use in the Intensive Care Unit Setting via a Novel Controller Scoring Metric. DeJournett J; DeJournett L J Diabetes Sci Technol; 2017 Nov; 11(6):1207-1217. PubMed ID: 28637358 [TBL] [Abstract][Full Text] [Related]
3. Performance of a closed-loop glucose control system, comprising a continuous glucose monitoring system and an AI-based controller in swine during severe hypo- and hyperglycemic provocations. DeJournett J; Nekludov M; DeJournett L; Wallin M J Clin Monit Comput; 2021 Apr; 35(2):317-325. PubMed ID: 32006145 [TBL] [Abstract][Full Text] [Related]
4. A closed-loop artificial pancreas based on risk management. Cameron F; Bequette BW; Wilson DM; Buckingham BA; Lee H; Niemeyer G J Diabetes Sci Technol; 2011 Mar; 5(2):368-79. PubMed ID: 21527108 [TBL] [Abstract][Full Text] [Related]
5. Closed-loop control and advisory mode evaluation of an artificial pancreatic Beta cell: use of proportional-integral-derivative equivalent model-based controllers. Percival MW; Zisser H; Jovanovic L; Doyle FJ J Diabetes Sci Technol; 2008 Jul; 2(4):636-44. PubMed ID: 19885240 [TBL] [Abstract][Full Text] [Related]
6. Postprandial fuzzy adaptive strategy for a hybrid proportional derivative controller for the artificial pancreas. Beneyto A; Vehi J Med Biol Eng Comput; 2018 Nov; 56(11):1973-1986. PubMed ID: 29725915 [TBL] [Abstract][Full Text] [Related]
7. Use of a "fuzzy logic" controller in a closed-loop artificial pancreas. Mauseth R; Hirsch IB; Bollyky J; Kircher R; Matheson D; Sanda S; Greenbaum C Diabetes Technol Ther; 2013 Aug; 15(8):628-33. PubMed ID: 23829285 [TBL] [Abstract][Full Text] [Related]
8. A closed-loop artificial pancreas using a proportional integral derivative with double phase lead controller based on a new nonlinear model of glucose metabolism. Abbes IB; Richard PY; Lefebvre MA; Guilhem I; Poirier JY J Diabetes Sci Technol; 2013 May; 7(3):699-707. PubMed ID: 23759403 [TBL] [Abstract][Full Text] [Related]
9. A computational proof of concept of a machine-intelligent artificial pancreas using Lyapunov stability and differential game theory. Greenwood NJ; Gunton JE J Diabetes Sci Technol; 2014 Jul; 8(4):791-806. PubMed ID: 25562888 [TBL] [Abstract][Full Text] [Related]
10. Continuous glucose monitoring considerations for the development of a closed-loop artificial pancreas system. Keenan DB; Grosman B; Clark HW; Roy A; Weinzimer SA; Shah RV; Mastrototaro JJ J Diabetes Sci Technol; 2011 Nov; 5(6):1327-36. PubMed ID: 22226249 [TBL] [Abstract][Full Text] [Related]
11. Adaptive fuzzy integral sliding mode control of blood glucose level in patients with type 1 diabetes: In silico studies. Asadi S; Nekoukar V Math Biosci; 2018 Nov; 305():122-132. PubMed ID: 30201283 [TBL] [Abstract][Full Text] [Related]
12. Model free sliding mode controller for blood glucose control: Towards artificial pancreas without need to mathematical model of the system. Ebrahimi N; Ozgoli S; Ramezani A Comput Methods Programs Biomed; 2020 Oct; 195():105663. PubMed ID: 32750632 [TBL] [Abstract][Full Text] [Related]
13. PID and LQG controllers for diabetes system with internal delay: a comparison study. Syafiie S; AlHarbi F; Alshehri AA; Hasanain B Biomed Phys Eng Express; 2023 Apr; 9(3):. PubMed ID: 37054685 [TBL] [Abstract][Full Text] [Related]
14. An Enhanced Model Predictive Control for the Artificial Pancreas Using a Confidence Index Based on Residual Analysis of Past Predictions. Laguna Sanz AJ; Doyle FJ; Dassau E J Diabetes Sci Technol; 2017 May; 11(3):537-544. PubMed ID: 28745095 [TBL] [Abstract][Full Text] [Related]
15. Health technology assessment review: Computerized glucose regulation in the intensive care unit--how to create artificial control. Hoekstra M; Vogelzang M; Verbitskiy E; Nijsten MW Crit Care; 2009; 13(5):223. PubMed ID: 19849827 [TBL] [Abstract][Full Text] [Related]
16. A PI-fuzzy logic controller for the regulation of blood glucose level in diabetic patients. Ibbini M J Med Eng Technol; 2006; 30(2):83-92. PubMed ID: 16531347 [TBL] [Abstract][Full Text] [Related]
17. GoCARB in the Context of an Artificial Pancreas. Agianniotis A; Anthimopoulos M; Daskalaki E; Drapela A; Stettler C; Diem P; Mougiakakou S J Diabetes Sci Technol; 2015 May; 9(3):549-55. PubMed ID: 25904142 [TBL] [Abstract][Full Text] [Related]
18. Glucose control in pediatric intensive care unit patients using an insulin-glucose algorithm. Wintergerst KA; Deiss D; Buckingham B; Cantwell M; Kache S; Agarwal S; Wilson DM; Steil G Diabetes Technol Ther; 2007 Jun; 9(3):211-22. PubMed ID: 17561791 [TBL] [Abstract][Full Text] [Related]
19. Stress Testing of an Artificial Pancreas System With Pizza and Exercise Leads to Improvements in the System's Fuzzy Logic Controller. Mauseth R; Lord SM; Hirsch IB; Kircher RC; Matheson DP; Greenbaum CJ J Diabetes Sci Technol; 2015 Sep; 9(6):1253-9. PubMed ID: 26370244 [TBL] [Abstract][Full Text] [Related]
20. Sensitivity of the Predictive Hypoglycemia Minimizer System to the Algorithm Aggressiveness Factor. Finan DA; Dassau E; Breton MD; Patek SD; McCann TW; Kovatchev BP; Doyle FJ; Levy BL; Venugopalan R J Diabetes Sci Technol; 2015 Jun; 10(1):104-10. PubMed ID: 26134834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]