BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27302031)

  • 1. Conformational flexibility related to enzyme activity: evidence for a dynamic active-site gatekeeper function of Tyr(215) in Aerococcus viridans lactate oxidase.
    Stoisser T; Brunsteiner M; Wilson DK; Nidetzky B
    Sci Rep; 2016 Jun; 6():27892. PubMed ID: 27302031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speeding up the product release: a second-sphere contribution from Tyr191 to the reactivity of L-lactate oxidase revealed in crystallographic and kinetic studies of site-directed variants.
    Stoisser T; Klimacek M; Wilson DK; Nidetzky B
    FEBS J; 2015 Nov; 282(21):4130-40. PubMed ID: 26260739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray structures of Aerococcus viridans lactate oxidase and its complex with D-lactate at pH 4.5 show an alpha-hydroxyacid oxidation mechanism.
    Furuichi M; Suzuki N; Dhakshnamoorhty B; Minagawa H; Yamagishi R; Watanabe Y; Goto Y; Kaneko H; Yoshida Y; Yagi H; Waga I; Kumar PK; Mizuno H
    J Mol Biol; 2008 Apr; 378(2):436-46. PubMed ID: 18367206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Ala95-to-Gly substitution in Aerococcus viridans l-lactate oxidase revisited - structural consequences at the catalytic site and effect on reactivity with O2 and other electron acceptors.
    Stoisser T; Rainer D; Leitgeb S; Wilson DK; Nidetzky B
    FEBS J; 2015 Feb; 282(3):562-78. PubMed ID: 25423902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic study on the interaction of L-lactate oxidase with pyruvate at 1.9 Angstrom resolution.
    Li SJ; Umena Y; Yorita K; Matsuoka T; Kita A; Fukui K; Morimoto Y
    Biochem Biophys Res Commun; 2007 Jul; 358(4):1002-7. PubMed ID: 17517371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structure of L-lactate oxidase from Aerococcus viridans at 2.1A resolution reveals the mechanism of strict substrate recognition.
    Umena Y; Yorita K; Matsuoka T; Kita A; Fukui K; Morimoto Y
    Biochem Biophys Res Commun; 2006 Nov; 350(2):249-56. PubMed ID: 17007814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 2.1 A structure of Aerococcus viridans L-lactate oxidase (LOX).
    Leiros I; Wang E; Rasmussen T; Oksanen E; Repo H; Petersen SB; Heikinheimo P; Hough E
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Dec; 62(Pt 12):1185-90. PubMed ID: 17142893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic interactions in the l-lactate oxidase active site facilitate substrate binding at pH4.5.
    Furubayashi N; Inaka K; Kamo M; Umena Y; Matsuoka T; Morimoto Y
    Biochem Biophys Res Commun; 2021 Sep; 568():131-135. PubMed ID: 34214876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallization and preliminary X-ray diffraction study of L-lactate oxidase (LOX), R181M mutant, from Aerococcus viridans.
    Umena Y; Yorita K; Matsuoka T; Abe M; Kita A; Fukui K; Tsukihara T; Morimoto Y
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Apr; 61(Pt 4):439-41. PubMed ID: 16511063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and role for active site lid of lactate monooxygenase from Mycobacterium smegmatis.
    Kean KM; Karplus PA
    Protein Sci; 2019 Jan; 28(1):135-149. PubMed ID: 30207005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FMN-dependent oligomerization of putative lactate oxidase from Pediococcus acidilactici.
    Ashok Y; Maksimainen MM; Kallio T; Kilpeläinen P; Lehtiö L
    PLoS One; 2020; 15(2):e0223870. PubMed ID: 32092083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of L-lactate oxidase to a long chain alpha-hydroxyacid oxidase by site-directed mutagenesis of alanine 95 to glycine.
    Yorita K; Aki K; Ohkuma-Soyejima T; Kokubo T; Misaki H; Massey V
    J Biol Chem; 1996 Nov; 271(45):28300-5. PubMed ID: 8910450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of lactate oxidase from Enterococcus hirae revealed new aspects of active site loop function: Product-inhibition mechanism and oxygen gatekeeper.
    Hiraka K; Yoshida H; Tsugawa W; Asano R; La Belle JT; Ikebukuro K; Sode K
    Protein Sci; 2022 Oct; 31(10):e4434. PubMed ID: 36173159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-lactate oxidase and L-lactate monooxygenase: mechanistic variations on a common structural theme.
    Maeda-Yorita K; Aki K; Sagai H; Misaki H; Massey V
    Biochimie; 1995; 77(7-8):631-42. PubMed ID: 8589073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimizing the effects of oxygen interference on l-lactate sensors by a single amino acid mutation in Aerococcus viridansl-lactate oxidase.
    Hiraka K; Kojima K; Lin CE; Tsugawa W; Asano R; La Belle JT; Sode K
    Biosens Bioelectron; 2018 Apr; 103():163-170. PubMed ID: 29279290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the interpretation of quantitative structure-function activity relationship data for lactate oxidase.
    Yorita K; Misaki H; Palfey BA; Massey V
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2480-5. PubMed ID: 10706608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sampling the conformational energy landscape of a hyperthermophilic protein by engineering key substitutions.
    Colletier JP; Aleksandrov A; Coquelle N; Mraihi S; Mendoza-Barberá E; Field M; Madern D
    Mol Biol Evol; 2012 Jun; 29(6):1683-94. PubMed ID: 22319152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyruvate Occupancy in the Carboxyl Transferase Domain of Pyruvate Carboxylase Facilitates Product Release from the Biotin Carboxylase Domain through an Intermolecular Mechanism.
    Westerhold LE; Adams SL; Bergman HL; Zeczycki TN
    Biochemistry; 2016 Jun; 55(24):3447-60. PubMed ID: 27254467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibited enzymatic reaction of crosslinked lactate oxidase through a pH-dependent mechanism.
    Cunha-Silva H; Pires F; Dias-Cabral AC; Arcos-Martinez MJ
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110490. PubMed ID: 31536937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of two arginine residues in lactate oxidase with the enzyme flavin: conversion of FMN to 8-formyl-FMN.
    Yorita K; Matsuoka T; Misaki H; Massey V
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13039-44. PubMed ID: 11078532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.