These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 27302080)

  • 1. Polymeric Biomaterials for In Vitro Cancer Tissue Engineering and Drug Testing Applications.
    Pradhan S; Hassani I; Clary JM; Lipke EA
    Tissue Eng Part B Rev; 2016 Dec; 22(6):470-484. PubMed ID: 27302080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio Mimicking of Extracellular Matrix.
    Ghosh M; Halperin-Sternfeld M; Adler-Abramovich L
    Adv Exp Med Biol; 2019; 1174():371-399. PubMed ID: 31713206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications.
    Sun H; Meng F; Dias AA; Hendriks M; Feijen J; Zhong Z
    Biomacromolecules; 2011 Jun; 12(6):1937-55. PubMed ID: 21469742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
    Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A
    Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable biomaterials from synthetic, sequence-controlled polymers.
    Austin MJ; Rosales AM
    Biomater Sci; 2019 Jan; 7(2):490-505. PubMed ID: 30628589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-engineered 3D models for elucidating primary and metastatic bone cancer progression.
    González Díaz EC; Sinha S; Avedian RS; Yang F
    Acta Biomater; 2019 Nov; 99():18-32. PubMed ID: 31419564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Cell Culture in Interpenetrating Networks of Alginate and rBM Matrix.
    Wisdom K; Chaudhuri O
    Methods Mol Biol; 2017; 1612():29-37. PubMed ID: 28634933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models.
    Maji S; Lee H
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications.
    Liu S; Yu JM; Gan YC; Qiu XZ; Gao ZC; Wang H; Chen SX; Xiong Y; Liu GH; Lin SE; McCarthy A; John JV; Wei DX; Hou HH
    Mil Med Res; 2023 Mar; 10(1):16. PubMed ID: 36978167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymers as biomaterials for tissue engineering and controlled drug delivery.
    Nair LS; Laurencin CT
    Adv Biochem Eng Biotechnol; 2006; 102():47-90. PubMed ID: 17089786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Developments in Thiolated Polymeric Hydrogels for Tissue Engineering Applications.
    Gajendiran M; Rhee JS; Kim K
    Tissue Eng Part B Rev; 2018 Feb; 24(1):66-74. PubMed ID: 28726576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.
    Tam RY; Smith LJ; Shoichet MS
    Acc Chem Res; 2017 Apr; 50(4):703-713. PubMed ID: 28345876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-inspired 3D microenvironments: a new dimension in tissue engineering.
    Magin CM; Alge DL; Anseth KS
    Biomed Mater; 2016 Mar; 11(2):022001. PubMed ID: 26942469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular self-assembly and biomaterials-based organoid models of development and diseases.
    Shah SB; Singh A
    Acta Biomater; 2017 Apr; 53():29-45. PubMed ID: 28159716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of Biomaterials in Corneal Endothelial Tissue Engineering.
    Wang TJ; Wang IJ; Hu FR; Young TH
    Cornea; 2016 Nov; 35 Suppl 1():S25-S30. PubMed ID: 27617875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Update on the main use of biomaterials and techniques associated with tissue engineering.
    Steffens D; Braghirolli DI; Maurmann N; Pranke P
    Drug Discov Today; 2018 Aug; 23(8):1474-1488. PubMed ID: 29608960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered microenvironments provide new insights into ovarian and prostate cancer progression and drug responses.
    Loessner D; Holzapfel BM; Clements JA
    Adv Drug Deliv Rev; 2014 Dec; 79-80():193-213. PubMed ID: 24969478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical and biological advances in endothelial cell-based engineered co-culture model systems.
    Mierke CT
    Semin Cell Dev Biol; 2023 Sep; 147():58-69. PubMed ID: 36732105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems.
    Naderi H; Matin MM; Bahrami AR
    J Biomater Appl; 2011 Nov; 26(4):383-417. PubMed ID: 21926148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.