BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27302130)

  • 1. NEpiC: a network-assisted algorithm for epigenetic studies using mean and variance combined signals.
    Ruan P; Shen J; Santella RM; Zhou S; Wang S
    Nucleic Acids Res; 2016 Sep; 44(16):e134. PubMed ID: 27302130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating genetic networks into case-control association studies with high-dimensional DNA methylation data.
    Kim K; Sun H
    BMC Bioinformatics; 2019 Oct; 20(1):510. PubMed ID: 31640538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accounting for differential variability in detecting differentially methylated regions.
    Wang Y; Teschendorff AE; Widschwendter M; Wang S
    Brief Bioinform; 2019 Jan; 20(1):47-57. PubMed ID: 29912290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relative contribution of DNA methylation and genetic variants on protein biomarkers for human diseases.
    Ahsan M; Ek WE; Rask-Andersen M; Karlsson T; Lind-Thomsen A; Enroth S; Gyllensten U; Johansson Å
    PLoS Genet; 2017 Sep; 13(9):e1007005. PubMed ID: 28915241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple network algorithm for epigenetic modules via the integration of genome-wide DNA methylation and gene expression data.
    Ma X; Liu Z; Zhang Z; Huang X; Tang W
    BMC Bioinformatics; 2017 Jan; 18(1):72. PubMed ID: 28137264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the breast cancer methylome using formalin-fixed paraffin-embedded tumour.
    Wong EM; Joo JE; McLean CA; Baglietto L; English DR; Severi G; Wu HC; Terry MB; Hopper JL; Milne RL; Giles GG; Southey MC
    Breast Cancer Res Treat; 2016 Nov; 160(1):173-180. PubMed ID: 27604360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of differentially methylated cell types in epigenome-wide association studies.
    Zheng SC; Breeze CE; Beck S; Teschendorff AE
    Nat Methods; 2018 Dec; 15(12):1059-1066. PubMed ID: 30504870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring breast carcinogenesis through integrative genomics and epigenomics analyses.
    Minning C; Mokhtar NM; Abdullah N; Muhammad R; Emran NA; Ali SA; Harun R; Jamal R
    Int J Oncol; 2014 Nov; 45(5):1959-68. PubMed ID: 25175708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using epigenome-wide association scans of DNA methylation in age-related complex human traits.
    Tsai PC; Spector TD; Bell JT
    Epigenomics; 2012 Oct; 4(5):511-26. PubMed ID: 23130833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-network approach to identify differentially methylated gene communities in cancer.
    R V; Nazeer KAA
    Gene; 2019 May; 697():227-237. PubMed ID: 30797996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pETM: a penalized Exponential Tilt Model for analysis of correlated high-dimensional DNA methylation data.
    Sun H; Wang Y; Chen Y; Li Y; Wang S
    Bioinformatics; 2017 Jun; 33(12):1765-1772. PubMed ID: 28165116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EWAS Atlas: a curated knowledgebase of epigenome-wide association studies.
    Li M; Zou D; Li Z; Gao R; Sang J; Zhang Y; Li R; Xia L; Zhang T; Niu G; Bao Y; Zhang Z
    Nucleic Acids Res; 2019 Jan; 47(D1):D983-D988. PubMed ID: 30364969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell Type-Specific Signal Analysis in Epigenome-Wide Association Studies.
    Breeze CE
    Methods Mol Biol; 2022; 2432():57-71. PubMed ID: 35505207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Epigenetic Field Defects Using a Weighted Epigenetic Distance-Based Method.
    Wang Y; Qian M; Ruan P; Teschendorff AE; Wang S
    Methods Mol Biol; 2020; 2117():109-131. PubMed ID: 31960375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue.
    Geybels MS; Zhao S; Wong CJ; Bibikova M; Klotzle B; Wu M; Ostrander EA; Fan JB; Feng Z; Stanford JL
    Prostate; 2015 Dec; 75(16):1941-50. PubMed ID: 26383847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A network-based approach to identify disease-associated gene modules through integrating DNA methylation and gene expression.
    Zhang Y; Zhang J; Liu Z; Liu Y; Tuo S
    Biochem Biophys Res Commun; 2015 Sep; 465(3):437-42. PubMed ID: 26282201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EWAS: epigenome-wide association study software 2.0.
    Xu J; Zhao L; Liu D; Hu S; Song X; Li J; Lv H; Duan L; Zhang M; Jiang Q; Liu G; Jin S; Liao M; Zhang M; Feng R; Kong F; Xu L; Jiang Y
    Bioinformatics; 2018 Aug; 34(15):2657-2658. PubMed ID: 29566144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-type deconvolution in epigenome-wide association studies: a review and recommendations.
    Teschendorff AE; Zheng SC
    Epigenomics; 2017 May; 9(5):757-768. PubMed ID: 28517979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene, Environment and Methylation (GEM): a tool suite to efficiently navigate large scale epigenome wide association studies and integrate genotype and interaction between genotype and environment.
    Pan H; Holbrook JD; Karnani N; Kwoh CK
    BMC Bioinformatics; 2016 Aug; 17():299. PubMed ID: 27480116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative DNA methylome analysis of pan-cancer biomarkers in cancer discordant monozygotic twin-pairs.
    Roos L; van Dongen J; Bell CG; Burri A; Deloukas P; Boomsma DI; Spector TD; Bell JT
    Clin Epigenetics; 2016; 8():7. PubMed ID: 26798410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.