These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27302135)

  • 1. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells.
    Hu Y; Chua DH
    Sci Rep; 2016 Jun; 6():28088. PubMed ID: 27302135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells.
    Lv H; Wu P; Wan W; Mu S
    J Nanosci Nanotechnol; 2014 Sep; 14(9):7027-31. PubMed ID: 25924366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.
    Rowley-Neale SJ; Fearn JM; Brownson DA; Smith GC; Ji X; Banks CE
    Nanoscale; 2016 Aug; 8(31):14767-77. PubMed ID: 27448174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass-Producible 2D-MoS
    Rowley-Neale SJ; Smith GC; Banks CE
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22539-22548. PubMed ID: 28573849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CoxC encased in carbon nanotubes: an efficient oxygen reduction catalyst under both acidic and alkaline conditions.
    Chen L; Cui X; Wang Q; Zhang X; Wan G; Cui F; Wei C; Shi J
    Dalton Trans; 2015 Dec; 44(47):20708-13. PubMed ID: 26565522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An advanced MoS2 /carbon anode for high-performance sodium-ion batteries.
    Wang J; Luo C; Gao T; Langrock A; Mignerey AC; Wang C
    Small; 2015 Jan; 11(4):473-81. PubMed ID: 25256131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing Structural Changes of Fe-N-C Cathode Catalysts in PEM Fuel Cell by Mößbauer Spectroscopy of Complete Membrane Electrode Assemblies.
    Kramm UI; Lefèvre M; Bogdanoff P; Schmeißer D; Dodelet JP
    J Phys Chem Lett; 2014 Nov; 5(21):3750-6. PubMed ID: 26278745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells.
    Girishkumar G; Rettker M; Underhile R; Binz D; Vinodgopal K; McGinn P; Kamat P
    Langmuir; 2005 Aug; 21(18):8487-94. PubMed ID: 16114961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton Transport Functionality-Enabled Carbon Support for Improved Fuel Cell Performance and Durability.
    Yarlagadda V; Mellott N; Kumaraguru S; Ramaswamy N
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):55669-55678. PubMed ID: 37983595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.
    Zamora H; Plaza J; Cañizares P; Lobato J; Rodrigo MA
    ChemSusChem; 2016 May; 9(10):1187-93. PubMed ID: 27076055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen-induced surface area and conductivity modulation of carbon nanohorn and its function as an efficient metal-free oxygen reduction electrocatalyst for anion-exchange membrane fuel cells.
    Unni SM; Bhange SN; Illathvalappil R; Mutneja N; Patil KR; Kurungot S
    Small; 2015 Jan; 11(3):352-60. PubMed ID: 25155361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-Doping of an Fe/N/C ORR Catalyst for Polymer Electrolyte Membrane Fuel Cells with High Power Density.
    Wang YC; Lai YJ; Song L; Zhou ZY; Liu JG; Wang Q; Yang XD; Chen C; Shi W; Zheng YP; Rauf M; Sun SG
    Angew Chem Int Ed Engl; 2015 Aug; 54(34):9907-10. PubMed ID: 26140619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells.
    Sanetuntikul J; Shanmugam S
    Nanoscale; 2015 May; 7(17):7644-50. PubMed ID: 25833146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction.
    Vij V; Tiwari JN; Lee WG; Yoon T; Kim KS
    Sci Rep; 2016 Feb; 6():20132. PubMed ID: 26839148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly stable anode, carbon-free, catalyst support based on tungsten trioxide nanoclusters for proton-exchange membrane fuel cells.
    Dou M; Hou M; Zhang H; Li G; Lu W; Wei Z; Shao Z; Yi B
    ChemSusChem; 2012 May; 5(5):945-51. PubMed ID: 22532479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfur-Doped Porphyrinic Carbon Nanostructures Synthesized with Amorphous MoS
    Park HS; Han SB; Kwak DH; Lee GH; Choi IA; Kim DH; Ma KB; Kim MC; Kwon HJ; Park KW
    ChemSusChem; 2017 May; 10(10):2202-2209. PubMed ID: 28296248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sol-gel synthesis, electrochemical characterization, and stability testing of Ti(0.7)W(0.3)O2 nanoparticles for catalyst support applications in proton-exchange membrane fuel cells.
    Subban CV; Zhou Q; Hu A; Moylan TE; Wagner FT; DiSalvo FJ
    J Am Chem Soc; 2010 Dec; 132(49):17531-6. PubMed ID: 21090611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance and durability of Pt/C cathode catalysts with different kinds of carbons for polymer electrolyte fuel cells characterized by electrochemical and in situ XAFS techniques.
    Nagasawa K; Takao S; Higashi K; Nagamatsu S; Samjeské G; Imaizumi Y; Sekizawa O; Yamamoto T; Uruga T; Iwasawa Y
    Phys Chem Chem Phys; 2014 Jun; 16(21):10075-87. PubMed ID: 24513596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ultrathin self-humidifying membrane for PEM fuel cell application: fabrication, characterization, and experimental analysis.
    Zhu X; Zhang H; Zhang Y; Liang Y; Wang X; Yi B
    J Phys Chem B; 2006 Jul; 110(29):14240-8. PubMed ID: 16854127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.