These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27302206)

  • 61. Fabrication of photo-crosslinked chitosan- gelatin scaffold in sodium alginate hydrogel for chondrocyte culture.
    Zhao P; Deng C; Xu H; Tang X; He H; Lin C; Su J
    Biomed Mater Eng; 2014; 24(1):633-41. PubMed ID: 24211948
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Pellet culture elicits superior chondrogenic redifferentiation than alginate-based systems.
    Bernstein P; Dong M; Corbeil D; Gelinsky M; Günther KP; Fickert S
    Biotechnol Prog; 2009; 25(4):1146-52. PubMed ID: 19572391
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Repair full-thickness meniscal defects with injectable tissue engineering technique].
    Zhang HN; Leng P; Wang YZ; Lü CY; Wang XD; Wang CY
    Zhonghua Wai Ke Za Zhi; 2010 Sep; 48(17):1309-12. PubMed ID: 21092610
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells.
    Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG
    Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Influence of alginate on type II collagen fibrillogenesis.
    Kuo SM; Wang YJ; Weng CL; Lu HE; Chang SJ
    J Mater Sci Mater Med; 2005 Jun; 16(6):525-31. PubMed ID: 15928868
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation.
    Park J; Lee SJ; Chung S; Lee JH; Kim WD; Lee JY; Park SA
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():678-684. PubMed ID: 27987760
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cell delivery systems using alginate--carrageenan hydrogel beads and fibers for regenerative medicine applications.
    Popa EG; Gomes ME; Reis RL
    Biomacromolecules; 2011 Nov; 12(11):3952-61. PubMed ID: 21970513
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Chitosan-alginate hybrid scaffolds for bone tissue engineering.
    Li Z; Ramay HR; Hauch KD; Xiao D; Zhang M
    Biomaterials; 2005 Jun; 26(18):3919-28. PubMed ID: 15626439
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Alginate based hybrid copolymer hydrogels--influence of pore morphology on cell-material interaction.
    Gnanaprakasam Thankam F; Muthu J
    Carbohydr Polym; 2014 Nov; 112():235-44. PubMed ID: 25129740
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A comparison of alginate and chitosan fibres.
    Qin Y
    Med Device Technol; 2004; 15(1):34-7. PubMed ID: 14994638
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Osteogenic protein-1 promotes the formation of tissue-engineered cartilage using the alginate-recovered-chondrocyte method.
    Masuda K; Pfister BE; Sah RL; Thonar EJ
    Osteoarthritis Cartilage; 2006 Apr; 14(4):384-91. PubMed ID: 16324853
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering.
    Yan S; Wang T; Feng L; Zhu J; Zhang K; Chen X; Cui L; Yin J
    Biomacromolecules; 2014 Dec; 15(12):4495-508. PubMed ID: 25279766
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC).
    Alessandri K; Feyeux M; Gurchenkov B; Delgado C; Trushko A; Krause KH; Vignjević D; Nassoy P; Roux A
    Lab Chip; 2016 Apr; 16(9):1593-604. PubMed ID: 27025278
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Decoupled control of stiffness and permeability with a cell-encapsulating poly(ethylene glycol) dimethacrylate hydrogel.
    Cha C; Kim SY; Cao L; Kong H
    Biomaterials; 2010 Jun; 31(18):4864-71. PubMed ID: 20347136
    [TBL] [Abstract][Full Text] [Related]  

  • 75. RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications.
    Sandvig I; Karstensen K; Rokstad AM; Aachmann FL; Formo K; Sandvig A; Skjåk-Bræk G; Strand BL
    J Biomed Mater Res A; 2015 Mar; 103(3):896-906. PubMed ID: 24826938
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Role of alginate in bone tissue engineering.
    Venkatesan J; Nithya R; Sudha PN; Kim SK
    Adv Food Nutr Res; 2014; 73():45-57. PubMed ID: 25300542
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The effects of alginate composition on encapsulated betaTC3 cells.
    Stabler C; Wilks K; Sambanis A; Constantinidis I
    Biomaterials; 2001 Jun; 22(11):1301-10. PubMed ID: 11336302
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enhanced meniscal repair by overexpression of hIGF-1 in a full-thickness model.
    Zhang H; Leng P; Zhang J
    Clin Orthop Relat Res; 2009 Dec; 467(12):3165-74. PubMed ID: 19526274
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Comparison of meniscal fibrochondrocyte and synoviocyte bioscaffolds toward meniscal tissue engineering in the dog.
    Ballard GA; Warnock JJ; Bobe G; Duesterdieck-Zellmer KF; Baker L; Baltzer WI; Ott J
    Res Vet Sci; 2014 Oct; 97(2):400-8. PubMed ID: 24856453
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Regional-specific meniscal extracellular matrix hydrogels and their effects on cell-matrix interactions of fibrochondrocytes.
    Wu J; Xu J; Huang Y; Tang L; Hong Y
    Biomed Mater; 2021 Dec; 17(1):. PubMed ID: 34883474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.