These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 27302334)
1. Surface Modulation of Graphene Field Effect Transistors on Periodic Trench Structure. Jin JE; Choi JH; Yun H; Jang HK; Lee BC; Choi A; Joo MK; Dettlaff-Weglikowska U; Roth S; Lee SW; Lee JW; Kim GT ACS Appl Mater Interfaces; 2016 Jul; 8(28):18513-8. PubMed ID: 27302334 [TBL] [Abstract][Full Text] [Related]
2. Electrical and noise characteristics of graphene field-effect transistors: ambient effects, noise sources and physical mechanisms. Rumyantsev S; Liu G; Stillman W; Shur M; Balandin AA J Phys Condens Matter; 2010 Oct; 22(39):395302. PubMed ID: 21403224 [TBL] [Abstract][Full Text] [Related]
3. Poly(3-hexylthiophene) (P3HT)/graphene nanocomposite material based organic field effect transistor with enhanced mobility. Tiwari S; Singh AK; Prakash R J Nanosci Nanotechnol; 2014 Apr; 14(4):2823-8. PubMed ID: 24734696 [TBL] [Abstract][Full Text] [Related]
4. Understanding the bias dependence of low frequency noise in single layer graphene FETs. Mavredakis N; Garcia Cortadella R; Bonaccini Calia A; Garrido JA; Jiménez D Nanoscale; 2018 Aug; 10(31):14947-14956. PubMed ID: 30047555 [TBL] [Abstract][Full Text] [Related]
5. Improved performance of graphene transistors by strain engineering. Nguyen VH; Nguyen HV; Dollfus P Nanotechnology; 2014 Apr; 25(16):165201. PubMed ID: 24670679 [TBL] [Abstract][Full Text] [Related]
6. Dirac-cone induced gating enhancement in single-molecule field-effect transistors. Sun H; Liu X; Su Y; Deng B; Peng H; Decurtins S; Sanvito S; Liu SX; Hou S; Liao J Nanoscale; 2019 Jul; 11(27):13117-13125. PubMed ID: 31268079 [TBL] [Abstract][Full Text] [Related]
7. Top-gated graphene field-effect transistors with high normalized transconductance and designable dirac point voltage. Xu H; Zhang Z; Xu H; Wang Z; Wang S; Peng LM ACS Nano; 2011 Jun; 5(6):5031-7. PubMed ID: 21528892 [TBL] [Abstract][Full Text] [Related]
8. Trench FinFET Nanostructure with Advanced Ferroelectric Nanomaterial HfZrO Yan SC; Wu CH; Sun CJ; Lin YW; Yao YJ; Wu YC Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807999 [TBL] [Abstract][Full Text] [Related]
9. Enhancing the electrical properties of a flexible transparent graphene-based field-effect transistor using electropolished copper foil for graphene growth. Tsai LW; Tai NH ACS Appl Mater Interfaces; 2014 Jul; 6(13):10489-96. PubMed ID: 24922088 [TBL] [Abstract][Full Text] [Related]
10. Transformation of the electrical characteristics of graphene field-effect transistors with fluoropolymer. Ha TJ; Lee J; Chowdhury SF; Akinwande D; Rossky PJ; Dodabalapur A ACS Appl Mater Interfaces; 2013 Jan; 5(1):16-20. PubMed ID: 23252452 [TBL] [Abstract][Full Text] [Related]
11. Improved Drain Current Saturation and Voltage Gain in Graphene-on-Silicon Field Effect Transistors. Song SM; Bong JH; Hwang WS; Cho BJ Sci Rep; 2016 May; 6():25392. PubMed ID: 27142861 [TBL] [Abstract][Full Text] [Related]
12. Graphene field effect transistor scaling for ultra-low-noise sensors. Tran NAM; Fakih I; Durnan O; Hu A; Aygar AM; Napal I; Centeno A; Zurutuza A; Reulet B; Szkopek T Nanotechnology; 2021 Jan; 32(4):045502. PubMed ID: 33049728 [TBL] [Abstract][Full Text] [Related]
13. Surface-directed molecular assembly of pentacene on monolayer graphene for high-performance organic transistors. Lee WH; Park J; Sim SH; Lim S; Kim KS; Hong BH; Cho K J Am Chem Soc; 2011 Mar; 133(12):4447-54. PubMed ID: 21381751 [TBL] [Abstract][Full Text] [Related]
14. Theoretical study of the source-drain current and gate leakage current to understand the graphene field-effect transistors. Yu C; Liu H; Ni W; Gao N; Zhao J; Zhang H Phys Chem Chem Phys; 2011 Feb; 13(8):3461-7. PubMed ID: 21240394 [TBL] [Abstract][Full Text] [Related]
15. Finite size effects on the gate leakage current in graphene nanoribbon field-effect transistors. Mao LF Nanotechnology; 2009 Jul; 20(27):275203. PubMed ID: 19528675 [TBL] [Abstract][Full Text] [Related]
16. Suspending effect on low-frequency charge noise in graphene quantum dot. Song XX; Li HO; You J; Han TY; Cao G; Tu T; Xiao M; Guo GC; Jiang HW; Guo GP Sci Rep; 2015 Jan; 5():8142. PubMed ID: 25634250 [TBL] [Abstract][Full Text] [Related]
17. Current saturation in submicrometer graphene transistors with thin gate dielectric: experiment, simulation, and theory. Han SJ; Reddy D; Carpenter GD; Franklin AD; Jenkins KA ACS Nano; 2012 Jun; 6(6):5220-6. PubMed ID: 22582702 [TBL] [Abstract][Full Text] [Related]
18. Mobility-dependent low-frequency noise in graphene field-effect transistors. Zhang Y; Mendez EE; Du X ACS Nano; 2011 Oct; 5(10):8124-30. PubMed ID: 21913642 [TBL] [Abstract][Full Text] [Related]
19. Highly Stable and Tunable n-Type Graphene Field-Effect Transistors with Poly(vinyl alcohol) Films. Kim S; Zhao P; Aikawa S; Einarsson E; Chiashi S; Maruyama S ACS Appl Mater Interfaces; 2015 May; 7(18):9702-8. PubMed ID: 25872933 [TBL] [Abstract][Full Text] [Related]
20. Reversible and Irreversible Responses of Defect-Engineered Graphene-Based Electrolyte-Gated pH Sensors. Kwon SS; Yi J; Lee WW; Shin JH; Kim SH; Cho SH; Nam S; Park WI ACS Appl Mater Interfaces; 2016 Jan; 8(1):834-9. PubMed ID: 26692009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]