These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
486 related articles for article (PubMed ID: 27302376)
1. Advances in targeted proteomics and applications to biomedical research. Shi T; Song E; Nie S; Rodland KD; Liu T; Qian WJ; Smith RD Proteomics; 2016 Aug; 16(15-16):2160-82. PubMed ID: 27302376 [TBL] [Abstract][Full Text] [Related]
2. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition. Vidova V; Spacil Z Anal Chim Acta; 2017 Apr; 964():7-23. PubMed ID: 28351641 [TBL] [Abstract][Full Text] [Related]
3. Technical considerations for large-scale parallel reaction monitoring analysis. Gallien S; Bourmaud A; Kim SY; Domon B J Proteomics; 2014 Apr; 100():147-59. PubMed ID: 24200835 [TBL] [Abstract][Full Text] [Related]
4. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics. Shi T; Su D; Liu T; Tang K; Camp DG; Qian WJ; Smith RD Proteomics; 2012 Apr; 12(8):1074-92. PubMed ID: 22577010 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in targeted proteomics for clinical applications. Domon B; Gallien S Proteomics Clin Appl; 2015 Apr; 9(3-4):423-31. PubMed ID: 25504492 [TBL] [Abstract][Full Text] [Related]
6. Assessment of SRM, MRM(3) , and DIA for the targeted analysis of phosphorylation dynamics in non-small cell lung cancer. Schmidlin T; Garrigues L; Lane CS; Mulder TC; van Doorn S; Post H; de Graaf EL; Lemeer S; Heck AJ; Altelaar AF Proteomics; 2016 Aug; 16(15-16):2193-205. PubMed ID: 27219855 [TBL] [Abstract][Full Text] [Related]
8. Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques. Meyer JG; Schilling B Expert Rev Proteomics; 2017 May; 14(5):419-429. PubMed ID: 28436239 [TBL] [Abstract][Full Text] [Related]
9. Detection and quantification of proteins in clinical samples using high resolution mass spectrometry. Gallien S; Domon B Methods; 2015 Jun; 81():15-23. PubMed ID: 25843604 [TBL] [Abstract][Full Text] [Related]
10. Targeted proteomics coming of age - SRM, PRM and DIA performance evaluated from a core facility perspective. Kockmann T; Trachsel C; Panse C; Wahlander A; Selevsek N; Grossmann J; Wolski WE; Schlapbach R Proteomics; 2016 Aug; 16(15-16):2183-92. PubMed ID: 27130639 [TBL] [Abstract][Full Text] [Related]
11. Targeted Proteomics as a Tool for Quantifying Urine-Based Biomarkers. Mohan SV; Nayakanti DS; Sathe G; George IA; Gowda H; Kumar P Methods Mol Biol; 2020; 2051():277-295. PubMed ID: 31552634 [TBL] [Abstract][Full Text] [Related]
12. Carrier-assisted One-pot Sample Preparation for Targeted Proteomics Analysis of Small Numbers of Human Cells. Martin K; Zhang T; Zhang P; Chrisler WB; Thomas FL; Liu F; Liu T; Qian WJ; Smith RD; Shi T J Vis Exp; 2020 Nov; (165):. PubMed ID: 33226031 [TBL] [Abstract][Full Text] [Related]
13. Targeted quantification of low ng/mL level proteins in human serum without immunoaffinity depletion. Shi T; Sun X; Gao Y; Fillmore TL; Schepmoes AA; Zhao R; He J; Moore RJ; Kagan J; Rodland KD; Liu T; Liu AY; Smith RD; Tang K; Camp DG; Qian WJ J Proteome Res; 2013 Jul; 12(7):3353-61. PubMed ID: 23763644 [TBL] [Abstract][Full Text] [Related]
14. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry. Rauniyar N Int J Mol Sci; 2015 Dec; 16(12):28566-81. PubMed ID: 26633379 [TBL] [Abstract][Full Text] [Related]
15. SRM/MRM targeted proteomics as a tool for biomarker validation and absolute quantification in human urine. Mermelekas G; Vlahou A; Zoidakis J Expert Rev Mol Diagn; 2015; 15(11):1441-54. PubMed ID: 26472065 [TBL] [Abstract][Full Text] [Related]
16. Mass spectrometry-based targeted proteomics for analysis of protein mutations. Lin TT; Zhang T; Kitata RB; Liu T; Smith RD; Qian WJ; Shi T Mass Spectrom Rev; 2023 Mar; 42(2):796-821. PubMed ID: 34719806 [TBL] [Abstract][Full Text] [Related]
17. Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics. Ronsein GE; Pamir N; von Haller PD; Kim DS; Oda MN; Jarvik GP; Vaisar T; Heinecke JW J Proteomics; 2015 Jan; 113():388-99. PubMed ID: 25449833 [TBL] [Abstract][Full Text] [Related]
18. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. Manes NP; Nita-Lazar A J Proteomics; 2018 Oct; 189():75-90. PubMed ID: 29452276 [TBL] [Abstract][Full Text] [Related]
19. [Advances and applications of selective reaction monitoring technology in proteomics study ]. Shan Y; Zhang L; Zhang Y Se Pu; 2014 Apr; 32(4):330-5. PubMed ID: 25069319 [TBL] [Abstract][Full Text] [Related]
20. Enhanced sensitivity for selected reaction monitoring mass spectrometry-based targeted proteomics using a dual stage electrodynamic ion funnel interface. Hossain M; Kaleta DT; Robinson EW; Liu T; Zhao R; Page JS; Kelly RT; Moore RJ; Tang K; Camp DG; Qian WJ; Smith RD Mol Cell Proteomics; 2011 Feb; 10(2):M000062-MCP201. PubMed ID: 20410378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]