BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27302466)

  • 1. The RNA binding KH domain of Spoonbill depletes pathogenic non-coding spinocerebellar ataxia 8 transcripts and suppresses neurodegeneration in Drosophila.
    Tripathi BK; Surabhi S; Bhaskar PK; Mukherjee A; Mutsuddi M
    Biochim Biophys Acta; 2016 Sep; 1862(9):1732-41. PubMed ID: 27302466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with staufen in Drosophila.
    Mutsuddi M; Marshall CM; Benzow KA; Koob MD; Rebay I
    Curr Biol; 2004 Feb; 14(4):302-8. PubMed ID: 14972680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spoonbill positively regulates JNK signalling mediated apoptosis in Drosophila melanogaster.
    Das R; Pandey P; Maurya B; Pradhan P; Sinha D; Mukherjee A; Mutsuddi M
    Eur J Cell Biol; 2023 Jun; 102(2):151300. PubMed ID: 36858008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and clinical analysis of spinocerebellar ataxia type 8 repeat expansion in Yugoslavia.
    Topisirovic I; Dragasevic N; Savic D; Ristic A; Keckarevic M; Keckarevic D; Culjkovic B; Petrovic I; Romac S; Kostic VS
    Clin Genet; 2002 Oct; 62(4):321-4. PubMed ID: 12372061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes.
    Ikeda Y; Daughters RS; Ranum LP
    Cerebellum; 2008; 7(2):150-8. PubMed ID: 18418692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The First Case of Spinocerebellar Ataxia Type 8 in Monozygotic Twins.
    Sawada J; Katayama T; Tokashiki T; Kikuchi S; Kano K; Takahashi K; Saito T; Adachi Y; Okamoto Y; Yoshimura A; Takashima H; Hasebe N
    Intern Med; 2020 Jan; 59(2):277-283. PubMed ID: 31554751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8.
    Moseley ML; Zu T; Ikeda Y; Gao W; Mosemiller AK; Daughters RS; Chen G; Weatherspoon MR; Clark HB; Ebner TJ; Day JW; Ranum LP
    Nat Genet; 2006 Jul; 38(7):758-69. PubMed ID: 16804541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genes and pathways affected by CAG-repeat RNA-based toxicity in Drosophila.
    Shieh SY; Bonini NM
    Hum Mol Genet; 2011 Dec; 20(24):4810-21. PubMed ID: 21933837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PSP-Phenotype in SCA8: Case Report and Systemic Review.
    Samukawa M; Hirano M; Saigoh K; Kawai S; Hamada Y; Takahashi D; Nakamura Y; Kusunoki S
    Cerebellum; 2019 Feb; 18(1):76-84. PubMed ID: 29916049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA gain-of-function in spinocerebellar ataxia type 8.
    Daughters RS; Tuttle DL; Gao W; Ikeda Y; Moseley ML; Ebner TJ; Swanson MS; Ranum LP
    PLoS Genet; 2009 Aug; 5(8):e1000600. PubMed ID: 19680539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and clinical analyses of spinocerebellar ataxia type 8 in mainland China.
    Zhou Y; Yuan Y; Liu Z; Zeng S; Chen Z; Shen L; Jiang H; Xia K; Tang B; Wang J
    J Neurol; 2019 Dec; 266(12):2979-2986. PubMed ID: 31471687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8).
    Koob MD; Moseley ML; Schut LJ; Benzow KA; Bird TD; Day JW; Ranum LP
    Nat Genet; 1999 Apr; 21(4):379-84. PubMed ID: 10192387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of Spoonbill with Prospero in Drosophila: Implications in neuroblast development.
    Tripathi BK; Das R; Mukherjee A; Mutsuddi M
    Genesis; 2017 Sep; 55(9):. PubMed ID: 28722203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular genetics of spinocerebellar ataxia type 8 (SCA8).
    Mutsuddi M; Rebay I
    RNA Biol; 2005 Apr; 2(2):49-52. PubMed ID: 17132942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of large expansions in SCA8 using a fluorescent repeat-primed PCR assay.
    Tanaka E; Maruyama H; Morino H; Kawakami H
    Hiroshima J Med Sci; 2011 Sep; 60(3):63-6. PubMed ID: 22053702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinocerebellar ataxia type 8 larger triplet expansion alters histone modification and induces RNA foci.
    Chen IC; Lin HY; Lee GC; Kao SH; Chen CM; Wu YR; Hsieh-Li HM; Su MT; Lee-Chen GJ
    BMC Mol Biol; 2009 Feb; 10():9. PubMed ID: 19203395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early onset of ataxia in a child with a pathogenic SCA8 allele.
    Felling RJ; Barron TF
    Pediatr Neurol; 2005 Aug; 33(2):136-8. PubMed ID: 16087061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families.
    Brusco A; Gellera C; Cagnoli C; Saluto A; Castucci A; Michielotto C; Fetoni V; Mariotti C; Migone N; Di Donato S; Taroni F
    Arch Neurol; 2004 May; 61(5):727-33. PubMed ID: 15148151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage.
    Jackson SM; Whitworth AJ; Greene JC; Libby RT; Baccam SL; Pallanck LJ; La Spada AR
    Gene; 2005 Feb; 347(1):35-41. PubMed ID: 15715978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the dynamics of Spinocerebellar Ataxia 8 (SCA8) locus through a comparative genetic approach in humans and apes.
    Andrés AM; Soldevila M; Saitou N; Volpini V; Calafell F; Bertranpetit J
    Neurosci Lett; 2003 Jan; 336(3):143-6. PubMed ID: 12505613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.