These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 27302661)

  • 1. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.
    Lamprecht A; Lakämper S; Baasch T; Schaap IA; Dual J
    Lab Chip; 2016 Jul; 16(14):2682-93. PubMed ID: 27302661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave.
    Liu X; Zheng T; Wang C
    Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields.
    Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics.
    Oberti S; Neild A; Möller D; Dual J
    Ultrasonics; 2008 Nov; 48(6-7):529-36. PubMed ID: 18649908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles.
    Hahn P; Leibacher I; Baasch T; Dual J
    Lab Chip; 2015 Nov; 15(22):4302-13. PubMed ID: 26448531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D numerical simulation of acoustophoretic motion induced by boundary-driven acoustic streaming in standing surface acoustic wave microfluidics.
    Namnabat MS; Moghimi Zand M; Houshfar E
    Sci Rep; 2021 Jun; 11(1):13326. PubMed ID: 34172758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping.
    Lakämper S; Lamprecht A; Schaap IA; Dual J
    Lab Chip; 2015 Jan; 15(1):290-300. PubMed ID: 25370872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trapping of microparticles in the near field of an ultrasonic transducer.
    Lilliehorn T; Simu U; Nilsson M; Almqvist M; Stepinski T; Laurell T; Nilsson J; Johansson S
    Ultrasonics; 2005 Mar; 43(5):293-303. PubMed ID: 15737379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic dipole and monopole effects in solid particle interaction dynamics during acoustophoresis.
    Saeidi D; Saghafian M; Haghjooy Javanmard S; Hammarström B; Wiklund M
    J Acoust Soc Am; 2019 Jun; 145(6):3311. PubMed ID: 31255151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of travelling wave components in standing surface acoustic wave (SSAW) systems.
    Devendran C; Albrecht T; Brenker J; Alan T; Neild A
    Lab Chip; 2016 Sep; 16(19):3756-3766. PubMed ID: 27722363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Quantitative Study of the Secondary Acoustic Radiation Force on Biological Cells during Acoustophoresis.
    Saeidi D; Saghafian M; Haghjooy Javanmard S; Wiklund M
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 32019234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffraction-based acoustic manipulation in microchannels enables continuous particle and bacteria focusing.
    Devendran C; Choi K; Han J; Ai Y; Neild A; Collins DJ
    Lab Chip; 2020 Aug; 20(15):2674-2688. PubMed ID: 32608464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of two-dimensional acoustic resonant modes in a particle separator.
    Townsend RJ; Hill M; Harris NR; White NM
    Ultrasonics; 2006 Dec; 44 Suppl 1():e467-71. PubMed ID: 16782151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.
    Collins DJ; Ma Z; Ai Y
    Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves.
    Hsu JC; Chang CY
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity of 2D Acoustofluidic Fields in an Ultrasonic Cavity Generated by Multiple Vibration Sources.
    Tang Q; Zhou S; Huang L; Chen Z
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on submicron particle separation and deflection using tilted-angle standing surface acoustic wave microfluidics.
    Peng T; Lin X; Li L; Huang L; Jiang B; Jia Y
    Heliyon; 2024 Feb; 10(3):e25042. PubMed ID: 38322952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.
    Collins DJ; Khoo BL; Ma Z; Winkler A; Weser R; Schmidt H; Han J; Ai Y
    Lab Chip; 2017 May; 17(10):1769-1777. PubMed ID: 28394386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.