These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 27302661)

  • 41. Sub-micron particle behaviour and capture at an immuno-sensor surface in an ultrasonic standing wave.
    Kuznetsova LA; Martin SP; Coakley WT
    Biosens Bioelectron; 2005 Dec; 21(6):940-8. PubMed ID: 16257663
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Retrieving acoustic energy densities and local pressure amplitudes in microfluidics by holographic time-lapse imaging.
    Cacace T; Bianco V; Paturzo M; Memmolo P; Vassalli M; Fraldi M; Mensitieri G; Ferraro P
    Lab Chip; 2018 Jun; 18(13):1921-1927. PubMed ID: 29878010
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Numerical study of interparticle radiation force acting on rigid spheres in a standing wave.
    Sepehrirahnama S; Lim KM; Chau FS
    J Acoust Soc Am; 2015 May; 137(5):2614-22. PubMed ID: 25994694
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Onset of particle trapping and release via acoustic bubbles.
    Chen Y; Fang Z; Merritt B; Strack D; Xu J; Lee S
    Lab Chip; 2016 Aug; 16(16):3024-32. PubMed ID: 26805706
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phase separation of a nonionic surfactant aqueous solution in a standing surface acoustic wave for submicron particle manipulation.
    Zhao L; Niu P; Casals E; Zeng M; Wu C; Yang Y; Sun S; Zheng Z; Wang Z; Ning Y; Duan X; Pang W
    Lab Chip; 2021 Feb; 21(4):660-667. PubMed ID: 33393566
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assembling and rotating erythrocyte aggregates by acoustofluidic pressure enabling full phase-contrast tomography.
    Cacace T; Memmolo P; Villone MM; De Corato M; Mugnano M; Paturzo M; Ferraro P; Maffettone PL
    Lab Chip; 2019 Sep; 19(18):3123-3132. PubMed ID: 31429851
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic measurement of the acoustic streaming time constant utilizing an optical tweezer.
    Goering C; Dual J
    Phys Rev E; 2021 Aug; 104(2-2):025104. PubMed ID: 34525602
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic-field devices for the ultrasonic manipulation of microparticles.
    Drinkwater BW
    Lab Chip; 2016 Jul; 16(13):2360-75. PubMed ID: 27256513
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surface acoustic wave diffraction driven mechanisms in microfluidic systems.
    Fakhfouri A; Devendran C; Albrecht T; Collins DJ; Winkler A; Schmidt H; Neild A
    Lab Chip; 2018 Jul; 18(15):2214-2224. PubMed ID: 29942943
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications.
    Johansson L; Enlund J; Johansson S; Katardjiev I; Yantchev V
    Biomed Microdevices; 2012 Apr; 14(2):279-89. PubMed ID: 22076383
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics.
    Chen C; Zhang SP; Mao Z; Nama N; Gu Y; Huang PH; Jing Y; Guo X; Costanzo F; Huang TJ
    Lab Chip; 2018 Dec; 18(23):3645-3654. PubMed ID: 30361727
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Applications of ultrasound streaming and radiation force in biosensors.
    Kuznetsova LA; Coakley WT
    Biosens Bioelectron; 2007 Mar; 22(8):1567-77. PubMed ID: 16979887
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acoustofluidic black holes for multifunctional in-droplet particle manipulation.
    Liu P; Tian Z; Yang K; Naquin TD; Hao N; Huang H; Chen J; Ma Q; Bachman H; Zhang P; Xu X; Hu J; Huang TJ
    Sci Adv; 2022 Apr; 8(13):eabm2592. PubMed ID: 35363512
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Theory and simulation of electroosmotic suppression of acoustic streaming.
    Winckelmann BG; Bruus H
    J Acoust Soc Am; 2021 Jun; 149(6):3917. PubMed ID: 34241445
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The directional sensitivity of the acoustic radiation force to particle diameter.
    Ran W; Saylor JR
    J Acoust Soc Am; 2015 Jun; 137(6):3288-98. PubMed ID: 26093419
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.
    Mitri FG
    Ultrasonics; 2009 Dec; 49(8):794-8. PubMed ID: 19692103
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices.
    Lei J; Hill M; Glynne-Jones P
    Lab Chip; 2014 Feb; 14(3):532-41. PubMed ID: 24284651
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modelling of particle paths passing through an ultrasonic standing wave.
    Townsend RJ; Hill M; Harris NR; White NM
    Ultrasonics; 2004 Apr; 42(1-9):319-24. PubMed ID: 15047305
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Periodic Rayleigh streaming vortices and Eckart flow arising from traveling-wave-based diffractive acoustic fields.
    Kolesnik K; Hashemzadeh P; Peng D; Stamp MEM; Tong W; Rajagopal V; Miansari M; Collins DJ
    Phys Rev E; 2021 Oct; 104(4-2):045104. PubMed ID: 34781567
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acoustic Manipulation of Bio-Particles at High Frequencies: An Analytical and Simulation Approach.
    Samandari M; Abrinia K; Sanati-Nezhad A
    Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.