BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 27302663)

  • 1. Quantifying ROS levels using CM-H
    Oparka M; Walczak J; Malinska D; van Oppen LMPE; Szczepanowska J; Koopman WJH; Wieckowski MR
    Methods; 2016 Oct; 109():3-11. PubMed ID: 27302663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe CM-H(2)DCFDA and confocal laser microscopy.
    Kristiansen KA; Jensen PE; Møller IM; Schulz A
    Physiol Plant; 2009 Aug; 136(4):369-83. PubMed ID: 19493304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real time monitoring and quantification of reactive oxygen species in breast cancer cell line MCF-7 by 2',7'-dichlorofluorescin diacetate (DCFDA) assay.
    Figueroa D; Asaduzzaman M; Young F
    J Pharmacol Toxicol Methods; 2018; 94(Pt 1):26-33. PubMed ID: 29630935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sea urchin spermatozoa generate at least two reactive oxygen species; the type of reactive oxygen species changes under different conditions.
    Kazama M; Hino A
    Mol Reprod Dev; 2012 Apr; 79(4):283-95. PubMed ID: 22328344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury.
    Shanker G; Aschner JL; Syversen T; Aschner M
    Brain Res Mol Brain Res; 2004 Sep; 128(1):48-57. PubMed ID: 15337317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening assay for oxidative stress in a feline astrocyte cell line, G355-5.
    Testa MP; Alvarado O; Wournell A; Lee J; Guilford FT; Henriksen SH; Phillips TR
    J Vis Exp; 2011 Jul; (53):e2841. PubMed ID: 21775965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic measurements of mitochondrial hydrogen peroxide concentration and glutathione redox state in rat pancreatic β-cells using ratiometric fluorescent proteins: confounding effects of pH with HyPer but not roGFP1.
    Roma LP; Duprez J; Takahashi HK; Gilon P; Wiederkehr A; Jonas JC
    Biochem J; 2012 Feb; 441(3):971-8. PubMed ID: 22050124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Medium-Throughput System for In Vitro Oxidative Stress Assessment in IPEC-J2 Cells.
    Ayuso M; Van Cruchten S; Van Ginneken C
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33019601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial Antioxidants and the Maintenance of Cellular Hydrogen Peroxide Levels.
    Mailloux RJ
    Oxid Med Cell Longev; 2018; 2018():7857251. PubMed ID: 30057684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetrabromobisphenol A (TBBPA)-stimulated reactive oxygen species (ROS) production in cell-free model using the 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assay-limitations of method.
    Szychowski KA; Rybczyńska-Tkaczyk K; Leja ML; Wójtowicz AK; Gmiński J
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):12246-52. PubMed ID: 26976009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the HyPer biosensor as molecular tool for monitoring cellular antioxidant capacity.
    Hernández H; Parra A; Tobar N; Molina J; Kallens V; Hidalgo M; Varela D; Martínez J; Porras O
    Redox Biol; 2018 Jun; 16():199-208. PubMed ID: 29524842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustained accumulation of prelamin A and depletion of lamin A/C both cause oxidative stress and mitochondrial dysfunction but induce different cell fates.
    Sieprath T; Corne TD; Nooteboom M; Grootaert C; Rajkovic A; Buysschaert B; Robijns J; Broers JL; Ramaekers FC; Koopman WJ; Willems PH; De Vos WH
    Nucleus; 2015; 6(3):236-46. PubMed ID: 25996284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modified fixed staining method for the simultaneous measurement of reactive oxygen species and oxidative responses.
    Shen WJ; Hsieh CY; Chen CL; Yang KC; Ma CT; Choi PC; Lin CF
    Biochem Biophys Res Commun; 2013 Jan; 430(1):442-7. PubMed ID: 23178299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo ROS and redox potential fluorescent detection in plants: Present approaches and future perspectives.
    Ortega-Villasante C; Burén S; Barón-Sola Á; Martínez F; Hernández LE
    Methods; 2016 Oct; 109():92-104. PubMed ID: 27424086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells.
    Forkink M; Smeitink JA; Brock R; Willems PH; Koopman WJ
    Biochim Biophys Acta; 2010; 1797(6-7):1034-44. PubMed ID: 20100455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular Redox Profiling Using High-content Microscopy.
    Sieprath T; Corne T; Robijns J; Koopman WJH; De Vos WH
    J Vis Exp; 2017 May; (123):. PubMed ID: 28570523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants.
    Ortega-Villasante C; Burén S; Blázquez-Castro A; Barón-Sola Á; Hernández LE
    Free Radic Biol Med; 2018 Jul; 122():202-220. PubMed ID: 29627452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A radical shift in perspective: mitochondria as regulators of reactive oxygen species.
    Munro D; Treberg JR
    J Exp Biol; 2017 Apr; 220(Pt 7):1170-1180. PubMed ID: 28356365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.