BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 27302735)

  • 21. Multicolor Bioluminescence Imaging of Subcellular Structures and Multicolor Calcium Imaging in Single Living Cells.
    Suzuki K; Hossain MN; Matsuda T; Nagai T
    Methods Mol Biol; 2021; 2350():229-237. PubMed ID: 34331288
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer.
    James JR; Oliveira MI; Carmo AM; Iaboni A; Davis SJ
    Nat Methods; 2006 Dec; 3(12):1001-6. PubMed ID: 17086179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of heteromerization of more than two proteins by sequential BRET-FRET.
    Carriba P; Navarro G; Ciruela F; Ferré S; Casadó V; Agnati L; Cortés A; Mallol J; Fuxe K; Canela EI; Lluís C; Franco R
    Nat Methods; 2008 Aug; 5(8):727-33. PubMed ID: 18587404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time analysis of agonist-induced activation of protease-activated receptor 1/Galphai1 protein complex measured by bioluminescence resonance energy transfer in living cells.
    Ayoub MA; Maurel D; Binet V; Fink M; Prézeau L; Ansanay H; Pin JP
    Mol Pharmacol; 2007 May; 71(5):1329-40. PubMed ID: 17267663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-Cell NanoBRET Imaging with Green-Range HaloTag Acceptor.
    Thirukkumaran O; Mizuno H
    Methods Mol Biol; 2022; 2525():207-218. PubMed ID: 35836070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of Resonance Energy Transfer Techniques for In Vivo Detection of Chemokine Receptor Oligomerization.
    Martínez-Muñoz L; Rodríguez-Frade JM; Mellado M
    Methods Mol Biol; 2016; 1407():341-59. PubMed ID: 27271913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of novel resonance energy transfer techniques to study dynamic hormone receptor interactions in living cells.
    Eidne KA; Kroeger KM; Hanyaloglu AC
    Trends Endocrinol Metab; 2002 Dec; 13(10):415-21. PubMed ID: 12431837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Firefly Luciferase-Based Sequential Bioluminescence Resonance Energy Transfer (BRET)-Fluorescence Resonance Energy Transfer (FRET) Protease Assays.
    Branchini B
    Methods Mol Biol; 2016; 1461():101-15. PubMed ID: 27424898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light resonance energy transfer-based methods in the study of G protein-coupled receptor oligomerization.
    Gandía J; Lluís C; Ferré S; Franco R; Ciruela F
    Bioessays; 2008 Jan; 30(1):82-9. PubMed ID: 18081019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues.
    Xu X; Soutto M; Xie Q; Servick S; Subramanian C; von Arnim AG; Johnson CH
    Proc Natl Acad Sci U S A; 2007 Jun; 104(24):10264-9. PubMed ID: 17551013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An improved bioluminescence resonance energy transfer strategy for imaging intracellular events in single cells and living subjects.
    De A; Loening AM; Gambhir SS
    Cancer Res; 2007 Aug; 67(15):7175-83. PubMed ID: 17671185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of in vitro SUMOylation using bioluminescence resonance energy transfer (BRET).
    Kim YP; Jin Z; Kim E; Park S; Oh YH; Kim HS
    Biochem Biophys Res Commun; 2009 May; 382(3):530-4. PubMed ID: 19289109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bright Bioluminescent BRET Sensor Proteins for Measuring Intracellular Caspase Activity.
    den Hamer A; Dierickx P; Arts R; de Vries JSPM; Brunsveld L; Merkx M
    ACS Sens; 2017 Jun; 2(6):729-734. PubMed ID: 28670623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New Horizons on Molecular Pharmacology Applied to Drug Discovery: When Resonance Overcomes Radioligand Binding.
    Pernomian L; Gomes MS; Moreira JD; da Silva CHTP; Rosa JMC; Cardoso CRB
    Curr Radiopharm; 2017; 10(1):16-20. PubMed ID: 28183248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Genetically Encoded Bioluminescent System for Fast and Highly Sensitive Detection of Antibodies with a Bright Green Fluorescent Protein.
    Deng M; Yuan J; Yang H; Wu X; Wei X; Du Y; Wong G; Tao Y; Liu G; Jin Z; Chu J
    ACS Nano; 2021 Nov; 15(11):17602-17612. PubMed ID: 34726889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional complementation of high-efficiency resonance energy transfer: a new tool for the study of protein binding interactions in living cells.
    Molinari P; Casella I; Costa T
    Biochem J; 2008 Jan; 409(1):251-61. PubMed ID: 17868039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET).
    Prinz A; Diskar M; Erlbruch A; Herberg FW
    Cell Signal; 2006 Oct; 18(10):1616-25. PubMed ID: 16524697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitoring Ligand-Activated Protein-Protein Interactions Using Bioluminescent Resonance Energy Transfer (BRET) Assay.
    Coriano C; Powell E; Xu W
    Methods Mol Biol; 2016; 1473():3-15. PubMed ID: 27518618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling.
    Lohse MJ; Nuber S; Hoffmann C
    Pharmacol Rev; 2012 Apr; 64(2):299-336. PubMed ID: 22407612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insulin sensor cells for the analysis of insulin secretion responses in single living pancreatic β cells.
    Shigeto H; Ono T; Ikeda T; Hirota R; Ishida T; Kuroda A; Funabashi H
    Analyst; 2019 Jun; 144(12):3765-3772. PubMed ID: 31089611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.