These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27302910)

  • 1. Using delay differential equations to induce alternans in a model of cardiac electrophysiology.
    Eastman J; Sass J; Gomes JM; Dos Santos RW; Cherry EM
    J Theor Biol; 2016 Sep; 404():262-272. PubMed ID: 27302910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternans promotion in cardiac electrophysiology models by delay differential equations.
    Gomes JM; Dos Santos RW; Cherry EM
    Chaos; 2017 Sep; 27(9):093915. PubMed ID: 28964124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding cardiac alternans: a piecewise linear modeling framework.
    Thul R; Coombes S
    Chaos; 2010 Dec; 20(4):045102. PubMed ID: 21198114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delay differential equation-based models of cardiac tissue: Efficient implementation and effects on spiral-wave dynamics.
    Moreira Gomes J; Lobosco M; Weber Dos Santos R; Cherry EM
    Chaos; 2019 Dec; 29(12):123128. PubMed ID: 31893668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanisms of calcium cycling and action potential dynamics in cardiac alternans.
    Kanaporis G; Blatter LA
    Circ Res; 2015 Feb; 116(5):846-56. PubMed ID: 25532796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage noise influences action potential duration in cardiac myocytes.
    Tanskanen AJ; Alvarez LH
    Math Biosci; 2007 Jul; 208(1):125-46. PubMed ID: 17174348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic pacing reveals the propensity to cardiac action potential alternans and uncovers its underlying dynamics.
    Prudat Y; Madhvani RV; Angelini M; Borgstom NP; Garfinkel A; Karagueuzian HS; Weiss JN; de Lange E; Olcese R; Kucera JP
    J Physiol; 2016 May; 594(9):2537-53. PubMed ID: 26563830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion channel basis for alternans and memory in cardiac myocytes.
    Li M; Otani NF
    Ann Biomed Eng; 2003 Nov; 31(10):1213-30. PubMed ID: 14649495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Parsimonious Model of the Rabbit Action Potential Elucidates the Minimal Physiological Requirements for Alternans and Spiral Wave Breakup.
    Gray RA; Pathmanathan P
    PLoS Comput Biol; 2016 Oct; 12(10):e1005087. PubMed ID: 27749895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinguishing mechanisms for alternans in cardiac cells using constant-diastolic-interval pacing.
    Cherry EM
    Chaos; 2017 Sep; 27(9):093902. PubMed ID: 28964159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of the development of alternans in the heart during controlled diastolic interval pacing.
    Otani NF
    Chaos; 2017 Sep; 27(9):093935. PubMed ID: 28964128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity Analysis of Cardiac Alternans and Tachyarrhythmia to Ion Channel Conductance Using Population Modeling.
    Jeong DU; Marcellinus A; Lim KM
    Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36354539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of arrythmogenic cardiac alternans.
    Wilson LD; Rosenbaum DS
    Europace; 2007 Nov; 9 Suppl 6():vi77-82. PubMed ID: 17959697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of stochastic channel gating and distribution on the cardiac action potential.
    Lemay M; de Lange E; Kucera JP
    J Theor Biol; 2011 Jul; 281(1):84-96. PubMed ID: 21530545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of IKr to rate-dependent action potential dynamics in canine endocardium.
    Hua F; Gilmour RF
    Circ Res; 2004 Apr; 94(6):810-9. PubMed ID: 14963001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Memory in a fractional-order cardiomyocyte model alters properties of alternans and spontaneous activity.
    Comlekoglu T; Weinberg SH
    Chaos; 2017 Sep; 27(9):093904. PubMed ID: 28964143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-band decomposition analysis: application to cardiac alternans as a function of temperature.
    Gizzi A; Loppini A; Cherry EM; Cherubini C; Fenton FH; Filippi S
    Physiol Meas; 2017 May; 38(5):833-847. PubMed ID: 28448275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic origin of spatially discordant alternans in cardiac tissue.
    Hayashi H; Shiferaw Y; Sato D; Nihei M; Lin SF; Chen PS; Garfinkel A; Weiss JN; Qu Z
    Biophys J; 2007 Jan; 92(2):448-60. PubMed ID: 17071663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllability and state feedback control of a cardiac ionic cell model.
    Vogt R; Guzman A; Charron C; Muñoz L
    Comput Biol Med; 2021 Dec; 139():104909. PubMed ID: 34818582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.