These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27303394)

  • 1. Identification of Quantitative Proteomic Differences between Mycobacterium tuberculosis Lineages with Altered Virulence.
    Peters JS; Calder B; Gonnelli G; Degroeve S; Rajaonarifara E; Mulder N; Soares NC; Martens L; Blackburn JM
    Front Microbiol; 2016; 7():813. PubMed ID: 27303394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the membrane proteome of virulent Mycobacterium tuberculosis and the attenuated Mycobacterium bovis BCG vaccine strain by label-free quantitative proteomics.
    Gunawardena HP; Feltcher ME; Wrobel JA; Gu S; Braunstein M; Chen X
    J Proteome Res; 2013 Dec; 12(12):5463-74. PubMed ID: 24093440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Bioinformatics Analysis of Comparative Genomics of
    Jia X; Yang L; Dong M; Chen S; Lv L; Cao D; Fu J; Yang T; Zhang J; Zhang X; Shang Y; Wang G; Sheng Y; Huang H; Chen F
    Front Cell Infect Microbiol; 2017; 7():88. PubMed ID: 28377903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative proteomics reveals that dormancy-related proteins mediate the attenuation in mycobacterium strains.
    Wang H; Wan L; Shi J; Zhang T; Zhu H; Jiang S; Meng S; Wu S; Sun J; Chang L; Zhang L; Wan K; Yang J; Zhao X; Liu H; Zhang Y; Dai E; Xu P
    Virulence; 2021 Dec; 12(1):2228-2246. PubMed ID: 34634997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lineage-Specific Proteomic Signatures in the
    Yimer SA; Kalayou S; Homberset H; Birhanu AG; Riaz T; Zegeye ED; Lutter T; Abebe M; Holm-Hansen C; Aseffa A; Tønjum T
    Front Microbiol; 2020; 11():550760. PubMed ID: 33072011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteogenomic analysis of Mycobacterium tuberculosis Beijing B0/W148 cluster strains.
    Bespyatykh J; Smolyakov A; Guliaev A; Shitikov E; Arapidi G; Butenko I; Dogonadze M; Manicheva O; Ilina E; Zgoda V; Govorun V
    J Proteomics; 2019 Feb; 192():18-26. PubMed ID: 30009986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of protein purified derivative of Mycobacterium bovis.
    Roperto S; Varano M; Russo V; Lucà R; Cagiola M; Gaspari M; Ceccarelli DM; Cuda G; Roperto F
    J Transl Med; 2017 Apr; 15(1):68. PubMed ID: 28372590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycobacterial proteomics: analysis of expressed proteomes and post-translational modifications to identify candidate virulence factors.
    Calder B; Soares NC; de Kock E; Blackburn JM
    Expert Rev Proteomics; 2015 Feb; 12(1):21-35. PubMed ID: 25603863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Population structure analysis of Mycobacterium tuberculosis Beijing family in Japan].
    Iwamoto T
    Kekkaku; 2009 Dec; 84(12):755-9. PubMed ID: 20077859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secretome profiling of highly virulent Mycobacterium bovis 04-303 strain reveals higher abundance of virulence-associated proteins.
    Vargas-Romero F; Mendoza-Hernández G; Suárez-Güemes F; Hernández-Pando R; Castañón-Arreola M
    Microb Pathog; 2016 Nov; 100():305-311. PubMed ID: 27769937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Proteomic and Phosphoproteomic Analysis of H37Ra and H37Rv Strains of Mycobacterium tuberculosis.
    Verma R; Pinto SM; Patil AH; Advani J; Subba P; Kumar M; Sharma J; Dey G; Ravikumar R; Buggi S; Satishchandra P; Sharma K; Suar M; Tripathy SP; Chauhan DS; Gowda H; Pandey A; Gandotra S; Prasad TS
    J Proteome Res; 2017 Apr; 16(4):1632-1645. PubMed ID: 28241730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Impact of Genome Region of Difference 4 (RD4) on Mycobacterial Virulence and BCG Efficacy.
    Ru H; Liu X; Lin C; Yang J; Chen F; Sun R; Zhang L; Liu J
    Front Cell Infect Microbiol; 2017; 7():239. PubMed ID: 28642843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens.
    Jungblut PR; Schaible UE; Mollenkopf HJ; Zimny-Arndt U; Raupach B; Mattow J; Halada P; Lamer S; Hagens K; Kaufmann SH
    Mol Microbiol; 1999 Sep; 33(6):1103-17. PubMed ID: 10510226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Innate cytokine profiling of bovine alveolar macrophages reveals commonalities and divergence in the response to Mycobacterium bovis and Mycobacterium tuberculosis infection.
    Magee DA; Conlon KM; Nalpas NC; Browne JA; Pirson C; Healy C; McLoughlin KE; Chen J; Vordermeier HM; Gormley E; MacHugh DE; Gordon SV
    Tuberculosis (Edinb); 2014 Jul; 94(4):441-50. PubMed ID: 24882682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel reaction monitoring of clinical Mycobacterium tuberculosis lineages reveals pre-existent markers of rifampicin tolerance in the emerging Beijing lineage.
    de Keijzer J; Mulder A; de Ru AH; van Soolingen D; van Veelen PA
    J Proteomics; 2017 Jan; 150():9-17. PubMed ID: 27576137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Genomics of Field Isolates of Mycobacterium bovis and M. caprae Provides Evidence for Possible Correlates with Bacterial Viability and Virulence.
    de la Fuente J; Díez-Delgado I; Contreras M; Vicente J; Cabezas-Cruz A; Tobes R; Manrique M; López V; Romero B; Bezos J; Dominguez L; Sevilla IA; Garrido JM; Juste R; Madico G; Jones-López E; Gortazar C
    PLoS Negl Trop Dis; 2015 Nov; 9(11):e0004232. PubMed ID: 26583774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary landscape of the Mycobacterium tuberculosis complex from the viewpoint of PhoPR: implications for virulence regulation and application to vaccine development.
    Broset E; Martín C; Gonzalo-Asensio J
    mBio; 2015 Oct; 6(5):e01289-15. PubMed ID: 26489860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Proteomic Analysis of
    Yimer SA; Birhanu AG; Kalayou S; Riaz T; Zegeye ED; Beyene GT; Holm-Hansen C; Norheim G; Abebe M; Aseffa A; Tønjum T
    Front Microbiol; 2017; 8():795. PubMed ID: 28536560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of purified protein derivative of Mycobacterium tuberculosis.
    Prasad TS; Verma R; Kumar S; Nirujogi RS; Sathe GJ; Madugundu AK; Sharma J; Puttamallesh VN; Ganjiwale A; Myneedu VP; Chatterjee A; Pandey A; Harsha H; Narayana J
    Clin Proteomics; 2013 Jul; 10(1):8. PubMed ID: 23870090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-omics investigation into the mechanisms of hyper-virulence in
    Rajwani R; Galata C; Lee AWT; So PK; Leung KSS; Tam KKG; Shehzad S; Ng TTL; Zhu L; Lao HY; Chan CT; Leung JS; Lee LK; Wong KC; Yam WC; Siu GK
    Virulence; 2022 Dec; 13(1):1088-1100. PubMed ID: 35791449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.