These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27303429)

  • 21. Comparative transcriptome profiling of Blumeria graminis f. sp. tritici during compatible and incompatible interactions with sister wheat lines carrying and lacking Pm40.
    Hu Y; Liang Y; Zhang M; Tan F; Zhong S; Li X; Gong G; Chang X; Shang J; Tang S; Li T; Luo P
    PLoS One; 2018; 13(7):e0198891. PubMed ID: 29975700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteomic analysis of the compatible interaction of wheat and powdery mildew (Blumeria graminis f. sp. tritici).
    Li J; Yang X; Liu X; Yu H; Du C; Li M; He D
    Plant Physiol Biochem; 2017 Feb; 111():234-243. PubMed ID: 27951493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative Proteomic Analysis of Wheat Carrying
    Liang Y; Xia Y; Chang X; Gong G; Yang J; Hu Y; Cahill M; Luo L; Li T; He L; Zhang M
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30795512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative proteomics reveals the central changes of wheat in response to powdery mildew.
    Fu Y; Zhang H; Mandal SN; Wang C; Chen C; Ji W
    J Proteomics; 2016 Jan; 130():108-19. PubMed ID: 26381202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A truncated CC-NB-ARC gene TaRPP13L1-3D positively regulates powdery mildew resistance in wheat via the RanGAP-WPP complex-mediated nucleocytoplasmic shuttle.
    Zhang X; Wang G; Qu X; Wang M; Guo H; Zhang L; Li T; Wang Y; Zhang H; Ji W
    Planta; 2022 Feb; 255(3):60. PubMed ID: 35133503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of Defense-Related Gene Expression and Leaf Metabolome in Wheat During the Early Infection Stages of
    Allario T; Fourquez A; Magnin-Robert M; Siah A; Maia-Grondard A; Gaucher M; Brisset MN; Hugueney P; Reignault P; Baltenweck R; Randoux B
    Phytopathology; 2023 Aug; 113(8):1537-1547. PubMed ID: 37147741
    [No Abstract]   [Full Text] [Related]  

  • 27. Wheat powdery mildew resistance: from gene identification to immunity deployment.
    Zou S; Xu Y; Li Q; Wei Y; Zhang Y; Tang D
    Front Plant Sci; 2023; 14():1269498. PubMed ID: 37790783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytological and molecular analysis of nonhost resistance in rice to wheat powdery mildew and leaf rust pathogens.
    Cheng Y; Yao J; Zhang H; Huang L; Kang Z
    Protoplasma; 2015 Jul; 252(4):1167-79. PubMed ID: 25547964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitivity of the U.S.
    Meyers E; Arellano C; Cowger C
    Plant Dis; 2019 Dec; 103(12):3108-3116. PubMed ID: 31657998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic Dissection of Resistance to the Three Fungal Plant Pathogens
    Stadlmeier M; Jørgensen LN; Corsi B; Cockram J; Hartl L; Mohler V
    G3 (Bethesda); 2019 May; 9(5):1745-1757. PubMed ID: 30902891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Virulence structure and its genetic diversity analyses of Blumeria graminis f. sp. tritici isolates in China.
    Wu XX; Xu XF; Ma X; Chen RZ; Li TY; Cao YY
    BMC Evol Biol; 2019 Sep; 19(1):183. PubMed ID: 31533625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of Resistant Germplasm and Detection of Genes for Resistance to Powdery Mildew and Leaf Rust from 2,978 Wheat Accessions.
    Jin Y; Shi F; Liu W; Fu X; Gu T; Han G; Shi Z; Sheng Y; Xu H; Li L; An D
    Plant Dis; 2021 Dec; 105(12):3900-3908. PubMed ID: 34129353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Histone Deacetylase TaHDT701 Functions in TaHDA6-TaHOS15 Complex to Regulate Wheat Defense Responses to
    Zhi P; Kong L; Liu J; Zhang X; Wang X; Li H; Sun M; Li Y; Chang C
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32290114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Virulence Differences in Blumeria graminis f. sp. tritici from the Central and Eastern United States.
    Cowger C; Mehra L; Arellano C; Meyers E; Murphy JP
    Phytopathology; 2018 Mar; 108(3):402-411. PubMed ID: 29082810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis.
    Trujillo M; Troeger M; Niks RE; Kogel KH; Hückelhoven R
    Mol Plant Pathol; 2004 Sep; 5(5):389-96. PubMed ID: 20565615
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissecting the Molecular Interactions between Wheat and the Fungal Pathogen Zymoseptoria tritici.
    Kettles GJ; Kanyuka K
    Front Plant Sci; 2016; 7():508. PubMed ID: 27148331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diversity and similarity of wheat powdery mildew resistance among three allelic functional genes at the Pm60 locus.
    Zou S; Shi W; Ji J; Wang H; Tang Y; Yu D; Tang D
    Plant J; 2022 Jun; 110(6):1781-1790. PubMed ID: 35411560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TaSYP137 and TaVAMP723, the SNAREs Proteins from Wheat, Reduce Resistance to
    Wang G; Zhang X; Guo H; Zhao C; Zhang H; Chen C; Ji W
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902258
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fine Mapping a Broad-Spectrum Powdery Mildew Resistance Gene in Chinese Landrace Datoumai,
    Lu N; Lu M; Liu P; Xu H; Qiu X; Hu S; Wu Y; Bai S; Wu J; Xue S
    Plant Dis; 2020 Jun; 104(6):1709-1714. PubMed ID: 32289249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differentiation Among Blumeria graminis f. sp. tritici Isolates Originating from Wild Versus Domesticated Triticum Species in Israel.
    Ben-David R; Parks R; Dinoor A; Kosman E; Wicker T; Keller B; Cowger C
    Phytopathology; 2016 Aug; 106(8):861-70. PubMed ID: 27019062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.