BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 27303794)

  • 1. Thermal contraction of aqueous glycerol and ethylene glycol solutions for optimized protein-crystal cryoprotection.
    Shen C; Julius EF; Tyree TJ; Moreau DW; Atakisi H; Thorne RE
    Acta Crystallogr D Struct Biol; 2016 Jun; 72(Pt 6):742-52. PubMed ID: 27303794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of common cryoprotectants on critical warming rates and ice formation in aqueous solutions.
    Hopkins JB; Badeau R; Warkentin M; Thorne RE
    Cryobiology; 2012 Dec; 65(3):169-78. PubMed ID: 22728046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of cryosolution thermal contraction on proteins and protein crystals: volumes, conformation and order.
    Juers DH; Farley CA; Saxby CP; Cotter RA; Cahn JKB; Holton-Burke RC; Harrison K; Wu Z
    Acta Crystallogr D Struct Biol; 2018 Sep; 74(Pt 9):922-938. PubMed ID: 30198901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can thermal expansion differences between cryopreserved tissue and cryoprotective agents alone cause cracking?
    Steif PS; Noday DA; Rabin Y
    Cryo Letters; 2009; 30(6):414-21. PubMed ID: 20309497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the universality of viscosity in supersaturated binary aqueous sugar solutions: Cryopreservation by vitrification.
    Ruiz-Matus S; Goldstein P
    Cryobiology; 2024 Jun; 115():104886. PubMed ID: 38555011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of hydrogen bonds on state diagrams of cryoprotectant solutions.
    Osetsky OI
    Cryo Letters; 2024; 45(4):231-239. PubMed ID: 38809787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer-Mediated Cryopreservation of Bacteriophages.
    Marton HL; Styles KM; Kilbride P; Sagona AP; Gibson MI
    Biomacromolecules; 2021 Dec; 22(12):5281-5289. PubMed ID: 34846863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarized light scanning cryomacroscopy, part II: Thermal modeling and analysis of experimental observations.
    Feig JS; Solanki PK; Eisenberg DP; Rabin Y
    Cryobiology; 2016 Oct; 73(2):272-81. PubMed ID: 27343139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress in rational methods of cryoprotection in macromolecular crystallography.
    Alcorn T; Juers DH
    Acta Crystallogr D Biol Crystallogr; 2010 Apr; 66(Pt 4):366-73. PubMed ID: 20382989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryo-storage of porcine hides at the industrial scale for tissue engineering and regenerative medicine application.
    Wang H; Huang S; Tang Y; Sun WQ
    Cryo Letters; 2024; 45(3):149-157. PubMed ID: 38709186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitrification and levitation of a liquid droplet on liquid nitrogen.
    Song YS; Adler D; Xu F; Kayaalp E; Nureddin A; Anchan RM; Maas RL; Demirci U
    Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4596-600. PubMed ID: 20176969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid Remodeling Confers Osmotic Stress Tolerance to Embryogenic Cells during Cryopreservation.
    Lin L; Ma J; Ai Q; Pritchard HW; Li W; Chen H
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33671662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A drug-discovery-oriented non-invasive protocol for protein crystal cryoprotection by dehydration, with application for crystallization screening.
    Bellini D
    J Appl Crystallogr; 2022 Apr; 55(Pt 2):370-379. PubMed ID: 35497658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the behaviour of water in glycerol solutions by using delayed luminescence.
    Grasso R; Musumeci F; Gulino M; Scordino A
    PLoS One; 2018; 13(1):e0191861. PubMed ID: 29377914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct evidence that cryoprotectant mixtures facilitate individual component permeation into living plant cells.
    Pearce KC; Samuels FMD; Volk GM; Levinger NE
    Cryobiology; 2024 Jun; ():104928. PubMed ID: 38857776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bridging the Gap in Cryopreservation Mechanism: Unraveling the Interplay between Structure, Dynamics, and Thermodynamics in Cryoprotectant Aqueous Solutions.
    Mahanta DD; Brown DR; Webber T; Pezzotti S; Schwaab G; Han S; Shell MS; Havenith M
    J Phys Chem B; 2024 Apr; 128(15):3720-3731. PubMed ID: 38584393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facilitating protein crystal cryoprotection in thick-walled plastic capillaries by high-pressure cryocooling.
    Chen YF; Tate MW; Gruner SM
    J Appl Crystallogr; 2009 Jun; 42(Pt 3):525-530. PubMed ID: 19529790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomolecular cryocrystallography: structural changes during flash-cooling.
    Halle B
    Proc Natl Acad Sci U S A; 2004 Apr; 101(14):4793-8. PubMed ID: 15051877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved reproducibility of unit-cell parameters in macromolecular cryocrystallography by limiting dehydration during crystal mounting.
    Farley C; Burks G; Siegert T; Juers DH
    Acta Crystallogr D Biol Crystallogr; 2014 Aug; 70(Pt 8):2111-24. PubMed ID: 25084331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay of vitrification and ice formation in a cryoprotectant aqueous solution at low temperature.
    Alba-Simionesco C; Judeinstein P; Longeville S; Osta O; Porcher F; Caupin F; Tarjus G
    Proc Natl Acad Sci U S A; 2022 Mar; 119(12):e2112248119. PubMed ID: 35302891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.