These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 27304093)

  • 1. Effect of compartmentalization of donor and acceptor on the ultrafast resonance energy transfer from DAPI to silver nanoclusters.
    Prajapati R; Chatterjee S; Kannaujiya KK; Mukherjee TK
    Nanoscale; 2016 Jul; 8(26):13006-16. PubMed ID: 27304093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning of resonance energy transfer from 4',6-diamidino-2-phenylindole to an ultrasmall silver nanocluster across the lipid bilayer.
    Vaishnav JK; Mukherjee TK
    Phys Chem Chem Phys; 2017 Oct; 19(40):27305-27312. PubMed ID: 28967931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Förster resonance energy transfer-based biosensing platform with ultrasmall silver nanoclusters as energy acceptors.
    Xiao Y; Shu F; Wong KY; Liu Z
    Anal Chem; 2013 Sep; 85(18):8493-7. PubMed ID: 23981044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic studies of 1,4-dimethoxy-2,3-dimethylanthracene-9,10-dione on plasmonic silver nanoparticles.
    Kavitha SR; Umadevi M; Vanelle P; Terme T; Khoumeri O; Sridhar B
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():472-9. PubMed ID: 24973788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study into the role of surface capping on energy transfer in metal cluster-semiconductor nanocomposites.
    Bain D; Paramanik B; Sadhu S; Patra A
    Nanoscale; 2015 Dec; 7(48):20697-708. PubMed ID: 26603192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence Resonance Energy Transfer in a Supramolecular Assembly of Luminescent Silver Nanoclusters and a Cucurbit[8]uril-Based Host-Guest System.
    Pramanik S; Chithra S; Rai S; Agrawal S; Shil D; Mukherjee S
    J Phys Chem B; 2023 Aug; 127(30):6608-6619. PubMed ID: 37470765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upconversion emission of fluorescent silver nanoclusters and in situ selective DNA biosensing.
    Cui Q; Shao Y; Ma K; Xu S; Wu F; Liu G
    Analyst; 2012 May; 137(10):2362-6. PubMed ID: 22479694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel FRET immunosensor for rapid and sensitive detection of dicofol based on bimetallic nanoclusters.
    Pan Y; Wei X
    Anal Chim Acta; 2022 Sep; 1224():340235. PubMed ID: 35998992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of an upconversion nanoprobe with few-atom silver nanoclusters as the energy acceptor.
    Xiao Y; Zeng L; Xia T; Wu Z; Liu Z
    Angew Chem Int Ed Engl; 2015 Apr; 54(18):5323-7. PubMed ID: 25753304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonant excitation energy transfer from carbon dots to different sized silver nanoparticles.
    Prajapati R; Bhattacharya A; Mukherjee TK
    Phys Chem Chem Phys; 2016 Oct; 18(41):28911-28918. PubMed ID: 27723849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The aptamer DNA-templated fluorescence silver nanoclusters: ATP detection and preliminary mechanism investigation.
    Xu J; Wei C
    Biosens Bioelectron; 2017 Jan; 87():422-427. PubMed ID: 27589406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of chitosan/SiO
    Tian R; Chen J; Li D; Sun X; Ma H
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123417. PubMed ID: 37774585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MoS2 nanocrystals confined in a DNA matrix exhibiting energy transfer.
    Goswami N; Giri A; Pal SK
    Langmuir; 2013 Sep; 29(36):11471-8. PubMed ID: 23931064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-photon excited fluorescence energy transfer: a study based on oligonucleotide rulers.
    Wahlroos R; Toivonen J; Tirri M; Hänninen P
    J Fluoresc; 2006 May; 16(3):379-86. PubMed ID: 16791502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near infrared Ag/Au alloy nanoclusters: tunable photoluminescence and cellular imaging.
    Wang C; Xu L; Xu X; Cheng H; Sun H; Lin Q; Zhang C
    J Colloid Interface Sci; 2014 Feb; 416():274-9. PubMed ID: 24370431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions.
    Chen WY; Lan GY; Chang HT
    Anal Chem; 2011 Dec; 83(24):9450-5. PubMed ID: 22029551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast dynamics of Förster resonance energy transfer and photo-induced charge transfer in cationic polyfluorene/dye-labeled DNA complex.
    Kyhm K; Kim I; Kang M; Woo HY
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7733-8. PubMed ID: 23421134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photostable Copper Nanoclusters: Compatible Förster Resonance Energy-Transfer Assays and a Nanothermometer.
    Ghosh S; Das NK; Anand U; Mukherjee S
    J Phys Chem Lett; 2015 Apr; 6(7):1293-8. PubMed ID: 26262990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fluorometric biosensor based on functional Au/Ag nanoclusters for real-time monitoring of tyrosinase activity.
    Ao H; Qian Z; Zhu Y; Zhao M; Tang C; Huang Y; Feng H; Wang A
    Biosens Bioelectron; 2016 Dec; 86():542-547. PubMed ID: 27448544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.