These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27304920)

  • 41. Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method.
    Hongisto H; Ilmarinen T; Vattulainen M; Mikhailova A; Skottman H
    Stem Cell Res Ther; 2017 Dec; 8(1):291. PubMed ID: 29284513
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stem Cell-Derived Immature Human Dorsal Root Ganglia Neurons to Identify Peripheral Neurotoxicants.
    Hoelting L; Klima S; Karreman C; Grinberg M; Meisig J; Henry M; Rotshteyn T; Rahnenführer J; Blüthgen N; Sachinidis A; Waldmann T; Leist M
    Stem Cells Transl Med; 2016 Apr; 5(4):476-87. PubMed ID: 26933043
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differentiation of Spiral Ganglion-Derived Neural Stem Cells into Functional Synaptogenetic Neurons.
    Li X; Aleardi A; Wang J; Zhou Y; Andrade R; Hu Z
    Stem Cells Dev; 2016 May; 25(10):803-13. PubMed ID: 27021700
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Human cord blood-derived neural stem cell line--possible implementation in studying neurotoxicity.
    Buzańska L; Habich A; Jurga M; Sypecka J; Domańska-Janik K
    Toxicol In Vitro; 2005 Oct; 19(7):991-9. PubMed ID: 16084685
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Post-differentiation Replating of Human Pluripotent Stem Cell-derived Neurons for High-content Screening of Neuritogenesis and Synapse Maturation.
    Calabrese B; Powers RM; Slepian AJ; Halpain S
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31524872
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Generation of Regionally Specific Neural Progenitor Cells (NPCs) and Neurons from Human Pluripotent Stem Cells (hPSCs).
    Cutts J; Brookhouser N; Brafman DA
    Methods Mol Biol; 2016; 1516():121-144. PubMed ID: 27106497
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dual-SMAD Inhibition/WNT Activation-Based Methods to Induce Neural Crest and Derivatives from Human Pluripotent Stem Cells.
    Chambers SM; Mica Y; Lee G; Studer L; Tomishima MJ
    Methods Mol Biol; 2016; 1307():329-43. PubMed ID: 24301074
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A population of oligodendrocytes derived from multipotent neural precursor cells expresses a cholinergic phenotype in culture and responds to ciliary neurotrophic factor.
    MacDonald SC; Simcoff R; Jordan LM; Dodd JG; Cheng KW; Hochman S
    J Neurosci Res; 2002 May; 68(3):255-64. PubMed ID: 12111855
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neural induction with a dopaminergic phenotype from human pluripotent stem cells through a feeder-free floating aggregation culture.
    Morizane A; Doi D; Takahashi J
    Methods Mol Biol; 2013; 1018():11-9. PubMed ID: 23681613
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spatial and temporal control of cell aggregation efficiently directs human pluripotent stem cells towards neural commitment.
    Miranda CC; Fernandes TG; Pascoal JF; Haupt S; Brüstle O; Cabral JM; Diogo MM
    Biotechnol J; 2015 Oct; 10(10):1612-24. PubMed ID: 25866360
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Feeder-free and serum-free production of hepatocytes, cholangiocytes, and their proliferating progenitors from human pluripotent stem cells: application to liver-specific functional and cytotoxic assays.
    Nakamura N; Saeki K; Mitsumoto M; Matsuyama S; Nishio M; Saeki K; Hasegawa M; Miyagawa Y; Ohkita H; Kiyokawa N; Toyoda M; Akutsu H; Umezawa A; Yuo A
    Cell Reprogram; 2012 Apr; 14(2):171-85. PubMed ID: 22384928
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions.
    Meng G; Liu S; Rancourt DE
    Stem Cells Dev; 2012 Jul; 21(11):2036-48. PubMed ID: 22149941
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Network-wide integration of stem cell-derived neurons and mouse cortical neurons using microfabricated co-culture devices.
    Takayama Y; Moriguchi H; Kotani K; Suzuki T; Mabuchi K; Jimbo Y
    Biosystems; 2012 Jan; 107(1):1-8. PubMed ID: 21872639
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Controlling the Regional Identity of hPSC-Derived Neurons to Uncover Neuronal Subtype Specificity of Neurological Disease Phenotypes.
    Imaizumi K; Sone T; Ibata K; Fujimori K; Yuzaki M; Akamatsu W; Okano H
    Stem Cell Reports; 2015 Dec; 5(6):1010-1022. PubMed ID: 26549851
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells.
    Chen VC; Ye J; Shukla P; Hua G; Chen D; Lin Z; Liu JC; Chai J; Gold J; Wu J; Hsu D; Couture LA
    Stem Cell Res; 2015 Sep; 15(2):365-75. PubMed ID: 26318718
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells.
    Wilson HK; Canfield SG; Hjortness MK; Palecek SP; Shusta EV
    Fluids Barriers CNS; 2015 May; 12():13. PubMed ID: 25994964
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Agathisflavone enhances retinoic acid-induced neurogenesis and its receptors α and β in pluripotent stem cells.
    Paulsen BS; Souza CS; Chicaybam L; Bonamino MH; Bahia M; Costa SL; Borges HL; Rehen SK
    Stem Cells Dev; 2011 Oct; 20(10):1711-21. PubMed ID: 21281018
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor.
    Yan Y; Song L; Tsai AC; Ma T; Li Y
    Methods Mol Biol; 2016; 1502():119-28. PubMed ID: 26837215
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Human Pluripotent Stem Cells as Tools for Predicting Developmental Neural Toxicity of Chemicals: Strategies, Applications, and Challenges.
    Liang S; Yin N; Faiola F
    Stem Cells Dev; 2019 Jun; 28(12):755-768. PubMed ID: 30990109
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Involvement of Ngn2, Tbr and NeuroD proteins during postnatal olfactory bulb neurogenesis.
    Roybon L; Deierborg T; Brundin P; Li JY
    Eur J Neurosci; 2009 Jan; 29(2):232-43. PubMed ID: 19200230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.