These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
937 related articles for article (PubMed ID: 27304923)
1. Ensemble Feature Learning of Genomic Data Using Support Vector Machine. Anaissi A; Goyal M; Catchpoole DR; Braytee A; Kennedy PJ PLoS One; 2016; 11(6):e0157330. PubMed ID: 27304923 [TBL] [Abstract][Full Text] [Related]
2. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data. Zhang Y; Deng Q; Liang W; Zou X Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989 [TBL] [Abstract][Full Text] [Related]
3. A balanced iterative random forest for gene selection from microarray data. Anaissi A; Kennedy PJ; Goyal M; Catchpoole DR BMC Bioinformatics; 2013 Aug; 14():261. PubMed ID: 23981907 [TBL] [Abstract][Full Text] [Related]
4. Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics. Lin X; Li C; Zhang Y; Su B; Fan M; Wei H Molecules; 2017 Dec; 23(1):. PubMed ID: 29278382 [TBL] [Abstract][Full Text] [Related]
5. Recursive cluster elimination (RCE) for classification and feature selection from gene expression data. Yousef M; Jung S; Showe LC; Showe MK BMC Bioinformatics; 2007 May; 8():144. PubMed ID: 17474999 [TBL] [Abstract][Full Text] [Related]
6. The feature selection bias problem in relation to high-dimensional gene data. Krawczuk J; Łukaszuk T Artif Intell Med; 2016 Jan; 66():63-71. PubMed ID: 26674595 [TBL] [Abstract][Full Text] [Related]
7. A fast gene selection method for multi-cancer classification using multiple support vector data description. Cao J; Zhang L; Wang B; Li F; Yang J J Biomed Inform; 2015 Feb; 53():381-9. PubMed ID: 25549938 [TBL] [Abstract][Full Text] [Related]
8. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue. Chen Z; Li J; Wei L Artif Intell Med; 2007 Oct; 41(2):161-75. PubMed ID: 17851055 [TBL] [Abstract][Full Text] [Related]
9. Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis. Tang Y; Zhang YQ; Huang Z IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(3):365-81. PubMed ID: 17666757 [TBL] [Abstract][Full Text] [Related]
10. Stable gene selection from microarray data via sample weighting. Yu L; Han Y; Berens ME IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):262-72. PubMed ID: 21383420 [TBL] [Abstract][Full Text] [Related]
11. Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE. Niijima S; Kuhara S BMC Bioinformatics; 2006 Dec; 7():543. PubMed ID: 17187691 [TBL] [Abstract][Full Text] [Related]
12. Gene and sample selection using T-score with sample selection. Mundra PA; Rajapakse JC J Biomed Inform; 2016 Feb; 59():31-41. PubMed ID: 26556644 [TBL] [Abstract][Full Text] [Related]
13. Robust biomarker screening from gene expression data by stable machine learning-recursive feature elimination methods. Li L; Ching WK; Liu ZP Comput Biol Chem; 2022 Oct; 100():107747. PubMed ID: 35932551 [TBL] [Abstract][Full Text] [Related]
14. ESVM: evolutionary support vector machine for automatic feature selection and classification of microarray data. Huang HL; Chang FL Biosystems; 2007; 90(2):516-28. PubMed ID: 17280775 [TBL] [Abstract][Full Text] [Related]
15. MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data. Zhou X; Tuck DP Bioinformatics; 2007 May; 23(9):1106-14. PubMed ID: 17494773 [TBL] [Abstract][Full Text] [Related]
16. SVM-T-RFE: a novel gene selection algorithm for identifying metastasis-related genes in colorectal cancer using gene expression profiles. Li X; Peng S; Chen J; Lü B; Zhang H; Lai M Biochem Biophys Res Commun; 2012 Mar; 419(2):148-53. PubMed ID: 22306013 [TBL] [Abstract][Full Text] [Related]
17. Tuning to optimize SVM approach for assisting ovarian cancer diagnosis with photoacoustic imaging. Wang R; Li R; Lei Y; Zhu Q Biomed Mater Eng; 2015; 26 Suppl 1():S975-81. PubMed ID: 26406101 [TBL] [Abstract][Full Text] [Related]
19. SVM-RFE: selection and visualization of the most relevant features through non-linear kernels. Sanz H; Valim C; Vegas E; Oller JM; Reverter F BMC Bioinformatics; 2018 Nov; 19(1):432. PubMed ID: 30453885 [TBL] [Abstract][Full Text] [Related]
20. NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data. Zou M; Liu Z; Zhang XS; Wang Y Bioinformatics; 2015 Oct; 31(20):3330-8. PubMed ID: 26092859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]