These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
383 related articles for article (PubMed ID: 27305040)
1. Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage regeneration. Zhang J; Wang J; Zhang H; Lin J; Ge Z; Zou X Biomed Mater; 2016 Jun; 11(3):035014. PubMed ID: 27305040 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. Saghebasl S; Davaran S; Rahbarghazi R; Montaseri A; Salehi R; Ramazani A J Biomater Sci Polym Ed; 2018 Jul; 29(10):1185-1206. PubMed ID: 29490569 [TBL] [Abstract][Full Text] [Related]
3. Probing cell-matrix interactions in RGD-decorated macroporous poly (ethylene glycol) hydrogels for 3D chondrocyte culture. Zhang J; Mujeeb A; Du Y; Lin J; Ge Z Biomed Mater; 2015 Jun; 10(3):035016. PubMed ID: 26107534 [TBL] [Abstract][Full Text] [Related]
4. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. DeKosky BJ; Dormer NH; Ingavle GC; Roatch CH; Lomakin J; Detamore MS; Gehrke SH Tissue Eng Part C Methods; 2010 Dec; 16(6):1533-42. PubMed ID: 20626274 [TBL] [Abstract][Full Text] [Related]
5. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites. Schipani R; Scheurer S; Florentin R; Critchley SE; Kelly DJ Biofabrication; 2020 May; 12(3):035011. PubMed ID: 32252045 [TBL] [Abstract][Full Text] [Related]
6. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs. Mouser VH; Abbadessa A; Levato R; Hennink WE; Vermonden T; Gawlitta D; Malda J Biofabrication; 2017 Mar; 9(1):015026. PubMed ID: 28229956 [TBL] [Abstract][Full Text] [Related]
7. Rational Design and Development of Anisotropic and Mechanically Strong Gelatin-Based Stress Relaxing Hydrogels for Osteogenic/Chondrogenic Differentiation. Dey K; Agnelli S; Re F; Russo D; Lisignoli G; Manferdini C; Bernardi S; Gabusi E; Sartore L Macromol Biosci; 2019 Aug; 19(8):e1900099. PubMed ID: 31298816 [TBL] [Abstract][Full Text] [Related]
8. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering. Rennerfeldt DA; Renth AN; Talata Z; Gehrke SH; Detamore MS Biomaterials; 2013 Nov; 34(33):8241-57. PubMed ID: 23932504 [TBL] [Abstract][Full Text] [Related]
9. Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks. Liang J; Guo Z; Timmerman A; Grijpma D; Poot A Biomed Mater; 2019 Jan; 14(2):024102. PubMed ID: 30524039 [TBL] [Abstract][Full Text] [Related]
10. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Hwang Y; Sangaj N; Varghese S Tissue Eng Part A; 2010 Oct; 16(10):3033-41. PubMed ID: 20486791 [TBL] [Abstract][Full Text] [Related]
11. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering. Neumann AJ; Quinn T; Bryant SJ Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026 [TBL] [Abstract][Full Text] [Related]
19. Poly (l-lactide-co-caprolactone) scaffolds enhanced with poly (β-hydroxybutyrate-co-β-hydroxyvalerate) microspheres for cartilage regeneration. Li C; Zhang J; Li Y; Moran S; Khang G; Ge Z Biomed Mater; 2013 Apr; 8(2):025005. PubMed ID: 23385654 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering. Wang J; Zhang F; Tsang WP; Wan C; Wu C Biomaterials; 2017 Mar; 120():11-21. PubMed ID: 28024231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]