These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27305282)

  • 1. Establishment of cell surface engineering and its development.
    Ueda M
    Biosci Biotechnol Biochem; 2016 Jul; 80(7):1243-53. PubMed ID: 27305282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arming Technology in Yeast-Novel Strategy for Whole-cell Biocatalyst and Protein Engineering.
    Kuroda K; Ueda M
    Biomolecules; 2013 Sep; 3(3):632-50. PubMed ID: 24970185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of arming yeasts with active proteins and peptides via cell surface display system: cell surface engineering, bio-arming technology.
    Kuroda K; Ueda M
    Methods Mol Biol; 2014; 1152():137-55. PubMed ID: 24744031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of Arming Yeasts with Active Proteins and Peptides via Cell Surface Display System: Cell Surface Engineering, Bio-Arming Technology.
    Kuroda K; Ueda M
    Methods Mol Biol; 2022; 2513():59-77. PubMed ID: 35781200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast cell-surface display--applications of molecular display.
    Kondo A; Ueda M
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):28-40. PubMed ID: 14716465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Display of Multiple Kinds of Enzymes on the Yeast Cell Surface for Multistep Reactions.
    Kuroda K; Ueda M
    Methods Mol Biol; 2022; 2491():627-641. PubMed ID: 35482207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular display technology using yeast--arming technology.
    Shibasaki S; Maeda H; Ueda M
    Anal Sci; 2009 Jan; 25(1):41-9. PubMed ID: 19139571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput characterization of protein-protein interactions by reprogramming yeast mating.
    Younger D; Berger S; Baker D; Klavins E
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12166-12171. PubMed ID: 29087945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-surface engineering of yeasts for whole-cell biocatalysts.
    Ye M; Ye Y; Du Z; Chen G
    Bioprocess Biosyst Eng; 2021 Jun; 44(6):1003-1019. PubMed ID: 33389168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme Evolution by Yeast Cell Surface Engineering.
    Miura N; Kuroda K; Ueda M
    Methods Mol Biol; 2015; 1319():217-32. PubMed ID: 26060078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent developments in yeast cell surface display toward extended applications in biotechnology.
    Tanaka T; Yamada R; Ogino C; Kondo A
    Appl Microbiol Biotechnol; 2012 Aug; 95(3):577-91. PubMed ID: 22652839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell surface engineering of yeast: construction of arming yeast with biocatalyst.
    Ueda M; Tanaka A
    J Biosci Bioeng; 2000; 90(2):125-36. PubMed ID: 16232831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile microbial surface-display for environmental remediation and biofuels production.
    Wu CH; Mulchandani A; Chen W
    Trends Microbiol; 2008 Apr; 16(4):181-8. PubMed ID: 18321708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell surface engineering of yeast for applications in white biotechnology.
    Kuroda K; Ueda M
    Biotechnol Lett; 2011 Jan; 33(1):1-9. PubMed ID: 20872167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development and application of Saccharomyces cerevisiae cell-surface display for bioethanol production].
    Yang F; Cao M; Jin Y; Yang X; Tian S
    Sheng Wu Gong Cheng Xue Bao; 2012 Aug; 28(8):901-11. PubMed ID: 23185890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell surface engineering of industrial microorganisms for biorefining applications.
    Tanaka T; Kondo A
    Biotechnol Adv; 2015 Nov; 33(7):1403-11. PubMed ID: 26070720
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Zhang C; Chen H; Zhu Y; Zhang Y; Li X; Wang F
    Front Bioeng Biotechnol; 2022; 10():1056804. PubMed ID: 36568309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate.
    Guirimand G; Sasaki K; Inokuma K; Bamba T; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3477-87. PubMed ID: 26631184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cells and cell lysates: a direct approach for engineering antibodies against membrane proteins using yeast surface display.
    Tillotson BJ; Cho YK; Shusta EV
    Methods; 2013 Mar; 60(1):27-37. PubMed ID: 22449570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library.
    Feldhaus MJ; Siegel RW; Opresko LK; Coleman JR; Feldhaus JM; Yeung YA; Cochran JR; Heinzelman P; Colby D; Swers J; Graff C; Wiley HS; Wittrup KD
    Nat Biotechnol; 2003 Feb; 21(2):163-70. PubMed ID: 12536217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.