These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2730585)

  • 1. Effect of sulphate on glutamate synthesis by intact spinach (Spinacia oleracea) chloroplasts.
    Dumas R; Joyard J; Douce R
    Biochem J; 1989 May; 259(3):769-74. PubMed ID: 2730585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Sulfate transport across the limiting double membrane or envelope, of spinach chloroplasts].
    Mourioux G; Douce R
    Biochimie; 1979; 61(11-12):1283-92. PubMed ID: 540107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the control of long-chain-fatty acid synthesis in isolated intact spinach (Spinacia oleracea) chloroplasts.
    Roughan PG; Holland R; Slack CR
    Biochem J; 1979 Nov; 184(2):193-202. PubMed ID: 534525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of alkalinization and ATPase inhibition on stromal free Mg2+ concentration in spinach chloroplasts.
    Ishijima S; Ito H; Yoshimura H; Uchibori A; Ohnishi M
    Biosci Biotechnol Biochem; 2004 Nov; 68(11):2411-4. PubMed ID: 15564687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-ammonia assimilation, 2-oxoglutarate transport, and glutamate export in spinach chloroplasts in the presence of dicarboxylates in the light.
    Woo KC; Boyle FA; Flugge IU; Heldt HW
    Plant Physiol; 1987 Nov; 85(3):621-5. PubMed ID: 16665749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic characteristics of chloroplast glucose transport.
    Servaites JC; Geiger DR
    J Exp Bot; 2002 Jul; 53(374):1581-91. PubMed ID: 12096097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of copper on the photosynthesis of intact chloroplasts: interaction with manganese.
    Pádua M; Cavaco AM; Aubert S; Bligny R; Casimiro A
    Physiol Plant; 2010 Mar; 138(3):301-11. PubMed ID: 20051028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stromal protein phosphorylation in spinach (Spinacia oleracea) chloroplasts.
    Foyer CH
    Biochem J; 1985 Oct; 231(1):97-103. PubMed ID: 4062895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linoleate and alpha-linolenate synthesis by isolated spinach (Spinacia oleracea) chloroplasts.
    Roughan PG; Mudd JB; McManus TT; Slack CR
    Biochem J; 1979 Dec; 184(3):571-4. PubMed ID: 540049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of ammonia and 2-oxoglutarate-dependent o(2) evolution in isolated chloroplasts by dicarboxylates and the role of the chloroplast in photorespiratory nitrogen recycling.
    Woo KC; Osmond CB
    Plant Physiol; 1982 Mar; 69(3):591-6. PubMed ID: 16662255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiration of Sugars in Spinach (Spinacia oleracea), Maize (Zea mays), and Chlamydomonas reinhardtii F-60 Chloroplasts with Emphasis on the Hexose Kinases.
    Singh KK; Chen C; Epstein DK; Gibbs M
    Plant Physiol; 1993 Jun; 102(2):587-593. PubMed ID: 12231848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of chloroplasts and microsomal fractions in polar-lipid synthesis from [1-14C]acetate by cell-free preparations from spinach (Spinacia oleracea) leaves.
    Roughan PG; Holland R; Slack CR
    Biochem J; 1980 Apr; 188(1):17-24. PubMed ID: 7406878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat.
    Law MY; Charles SA; Halliwell B
    Biochem J; 1983 Mar; 210(3):899-903. PubMed ID: 6307273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamine transport and the role of the glutamine translocator in chloroplasts.
    Yu J; Woo KC
    Plant Physiol; 1988 Dec; 88(4):1048-54. PubMed ID: 16666419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-induced increase in free Mg2+ concentration in spinach chloroplasts: measurement of free Mg2+ by using a fluorescent probe and necessity of stromal alkalinization.
    Ishijima S; Uchibori A; Takagi H; Maki R; Ohnishi M
    Arch Biochem Biophys; 2003 Apr; 412(1):126-32. PubMed ID: 12646275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stromal concentrations of coenzyme A and its esters are insufficient to account for rates of chloroplast fatty acid synthesis: evidence for substrate channelling within the chloroplast fatty acid synthase.
    Roughan PG
    Biochem J; 1997 Oct; 327 ( Pt 1)(Pt 1):267-73. PubMed ID: 9355762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid isolation of intact chloroplasts from spinach leaves.
    Joly D; Carpentier R
    Methods Mol Biol; 2011; 684():321-5. PubMed ID: 20960139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 31P NMR studies of spinach leaves and their chloroplasts.
    Bligny R; Gardestrom P; Roby C; Douce R
    J Biol Chem; 1990 Jan; 265(3):1319-26. PubMed ID: 2153126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of sulfite on the ATP hydrolysis and synthesis activities in chloroplasts and cyanobacterial membrane vesicles can be explained by competition with phosphate.
    Bakels RH; Van Wielink JE; Krab K; Van Walraven HS
    Arch Biochem Biophys; 1996 Aug; 332(1):170-4. PubMed ID: 8806722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a light dependent increase of phosphoglucomutase activity in isolated, intact spinach chloroplasts.
    Sicher RC
    Plant Physiol; 1989 Feb; 89(2):557-63. PubMed ID: 16666582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.