These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 27305991)

  • 1. Non-equilibrium simulations of thermally induced electric fields in water.
    Wirnsberger P; Fijan D; Šarić A; Neumann M; Dellago C; Frenkel D
    J Chem Phys; 2016 Jun; 144(22):224102. PubMed ID: 27305991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pairwise Alternatives to Ewald Summation for Calculating Long-Range Electrostatics in Ionic Liquids.
    McCann BW; Acevedo O
    J Chem Theory Comput; 2013 Feb; 9(2):944-50. PubMed ID: 26588737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The zero-multipole summation method for estimating electrostatic interactions in molecular dynamics: analysis of the accuracy and application to liquid systems.
    Fukuda I; Kamiya N; Nakamura H
    J Chem Phys; 2014 May; 140(19):194307. PubMed ID: 24852538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Notes on "Ewald summation of electrostatic multipole interactions up to quadrupolar level" [J. Chem. Phys. 119, 7471 (2003)].
    Laino T; Hutter J
    J Chem Phys; 2008 Aug; 129(7):074102. PubMed ID: 19044755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computing the Kirkwood g-Factor by Combining Constant Maxwell Electric Field and Electric Displacement Simulations: Application to the Dielectric Constant of Liquid Water.
    Zhang C; Hutter J; Sprik M
    J Phys Chem Lett; 2016 Jul; 7(14):2696-701. PubMed ID: 27352038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water.
    Fukuda I; Kamiya N; Yonezawa Y; Nakamura H
    J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of the Wolf Method and Evaluation for Molecular Simulation of Vapor-Liquid Equilibria.
    Waibel C; Gross J
    J Chem Theory Comput; 2018 Apr; 14(4):2198-2206. PubMed ID: 29486111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions.
    Fischer NM; van Maaren PJ; Ditz JC; Yildirim A; van der Spoel D
    J Chem Theory Comput; 2015 Jul; 11(7):2938-44. PubMed ID: 26575731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model. II. Evaluation of the properties in an infinite crystal.
    Weatherly J; Macchi P; Volkov A
    Acta Crystallogr A Found Adv; 2021 Sep; 77(Pt 5):399-419. PubMed ID: 34473095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simplistic Coulomb forces in molecular dynamics: comparing the Wolf and shifted-force approximations.
    Hansen JS; Schrøder TB; Dyre JC
    J Phys Chem B; 2012 May; 116(19):5738-43. PubMed ID: 22497264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotational and spin viscosities of water: Application to nanofluidics.
    Hansen JS; Bruus H; Todd BD; Daivis PJ
    J Chem Phys; 2010 Oct; 133(14):144906. PubMed ID: 20950040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics.
    Fennell CJ; Gezelter JD
    J Chem Phys; 2006 Jun; 124(23):234104. PubMed ID: 16821904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast analytical evaluation of intermolecular electrostatic interaction energies using the pseudoatom representation of the electron density. III. Application to crystal structures via the Ewald and direct summation methods.
    Nguyen D; Macchi P; Volkov A
    Acta Crystallogr A Found Adv; 2020 Nov; 76(Pt 6):630-651. PubMed ID: 33125348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations.
    Mester Z; Panagiotopoulos AZ
    J Chem Phys; 2015 Jul; 143(4):044505. PubMed ID: 26233143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat capacity effects associated with the hydrophobic hydration and interaction of simple solutes: a detailed structural and energetical analysis based on molecular dynamics simulations.
    Paschek D
    J Chem Phys; 2004 Jun; 120(22):10605-17. PubMed ID: 15268086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations.
    Sagui C; Pedersen LG; Darden TA
    J Chem Phys; 2004 Jan; 120(1):73-87. PubMed ID: 15267263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations.
    Schwörer M; Lorenzen K; Mathias G; Tavan P
    J Chem Phys; 2015 Mar; 142(10):104108. PubMed ID: 25770527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water.
    Reif MM; Hünenberger PH
    J Chem Phys; 2011 Apr; 134(14):144104. PubMed ID: 21495739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Screening Functions as Cutoff-Based Alternatives to Ewald Summation in Molecular Dynamics Simulations Using Polarizable Force Fields.
    Vatamanu J; Borodin O; Bedrov D
    J Chem Theory Comput; 2018 Feb; 14(2):768-783. PubMed ID: 29294281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A long-range electrostatic potential based on the Wolf method charge-neutral condition.
    Yonezawa Y
    J Chem Phys; 2012 Jun; 136(24):244103. PubMed ID: 22755561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.