These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 27306012)

  • 1. Corresponding-states behavior of a dipolar model fluid with variable dispersion interactions and its relevance to the anomalies of hydrogen fluoride.
    Weiss VC; Leroy F
    J Chem Phys; 2016 Jun; 144(22):224501. PubMed ID: 27306012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guggenheim's rule and the enthalpy of vaporization of simple and polar fluids, molten salts, and room temperature ionic liquids.
    Weiss VC
    J Phys Chem B; 2010 Jul; 114(28):9183-94. PubMed ID: 20572655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corresponding-states behavior of an ionic model fluid with variable dispersion interactions.
    Weiss VC
    J Chem Phys; 2016 Jun; 144(23):234502. PubMed ID: 27334174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corresponding-states behavior of SPC/E-based modified (bent and hybrid) water models.
    Weiss VC
    J Chem Phys; 2017 Feb; 146(5):054506. PubMed ID: 28178789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A corresponding-states analysis of the liquid-vapor equilibrium properties of common water models.
    Fugel M; Weiss VC
    J Chem Phys; 2017 Feb; 146(6):064505. PubMed ID: 28201887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous corresponding-states surface tension of hydrogen fluoride and of the Onsager model.
    Weiss VC; Schröer W
    J Chem Phys; 2005 Feb; 122(8):84705. PubMed ID: 15836075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the influence of Coulomb and dispersion interactions on the wetting behavior of ionic liquids.
    Rane KS; Errington JR
    J Chem Phys; 2014 Nov; 141(17):174706. PubMed ID: 25381536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What makes ionic fluids characteristically ionic? A corresponding-states analysis of the surface tension of an ionic model fluid with variable dispersion interactions.
    Leroy F; Weiss VC
    J Chem Phys; 2011 Mar; 134(9):094703. PubMed ID: 21384993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase behavior of self-associating fluids with weaker dispersion interactions between bonded particles.
    Talanquer V
    J Chem Phys; 2005 Apr; 122(15):154510. PubMed ID: 15945648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, thermodynamics, and liquid-vapor equilibrium of ethanol from molecular-dynamics simulations using nonadditive interactions.
    Patel S; Brooks CL
    J Chem Phys; 2005 Oct; 123(16):164502. PubMed ID: 16268707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, dynamics, and the free energy of solute adsorption at liquid-vapor interfaces of simple dipolar systems: molecular dynamics results for pure and mixed Stockmayer fluids.
    Paul S; Chandra A
    J Phys Chem B; 2007 Nov; 111(43):12500-7. PubMed ID: 17927243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface tension and phase coexistence for fluids of molecules with extended dipoles.
    Sánchez-Arellano E; Benavides AL; Alejandre J
    J Chem Phys; 2012 Sep; 137(11):114708. PubMed ID: 22998282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An accurate density functional theory for the vapor-liquid interface of associating chain molecules based on the statistical associating fluid theory for potentials of variable range.
    Gloor GJ; Jackson G; Blas FJ; Del Río EM; de Miguel E
    J Chem Phys; 2004 Dec; 121(24):12740-59. PubMed ID: 15606300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freezing point and solid-liquid interfacial free energy of Stockmayer dipolar fluids: a molecular dynamics simulation study.
    Wang J; Apte PA; Morris JR; Zeng XC
    J Chem Phys; 2013 Sep; 139(11):114705. PubMed ID: 24070303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase behavior of aqueous solutions containing dipolar proteins from second-order perturbation theory.
    Tavares FW; Bratko D; Striolo A; Blanch HW; Prausnitz JM
    J Chem Phys; 2004 May; 120(20):9859-69. PubMed ID: 15268003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular simulation study of vapor-liquid critical properties of a simple fluid in attractive slit pores: crossover from 3D to 2D.
    Singh SK; Saha AK; Singh JK
    J Phys Chem B; 2010 Apr; 114(12):4283-92. PubMed ID: 20218567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bulk and interfacial properties of a dipolar-quadrupolar fluid in a uniform electric field: a density-functional approach.
    Warshavsky VB; Zeng XC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011203. PubMed ID: 12935128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of dipolar fluids using effective many-body isotropic interactions.
    Sindt JO; Camp PJ
    J Chem Phys; 2015 Jul; 143(2):024501. PubMed ID: 26178112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new dipolar potential for numerical simulations of polar fluids on the 4D hypersphere.
    Caillol JM; Trulsson M
    J Chem Phys; 2014 Sep; 141(12):124111. PubMed ID: 25273416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing the recent charge-on-spring type polarizable water models. II. Vapor-liquid equilibrium.
    Kiss PT; Baranyai A
    J Chem Phys; 2012 Nov; 137(19):194103. PubMed ID: 23181290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.