These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27306140)

  • 21. Quantum theory atoms in molecules charge-charge flux-dipole flux models for the infrared intensities of benzene and hexafluorobenzene.
    da Silva JV; Oliveira AE; Hase Y; Bruns RE
    J Phys Chem A; 2009 Jul; 113(27):7972-8. PubMed ID: 19522474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. QTAIM Atomic Charge and Polarization Parameters and Their Machine-Learning Transference among Boron-Halide Molecules.
    Duarte LJ; Bruns RE
    J Phys Chem A; 2020 Apr; 124(17):3407-3416. PubMed ID: 32250118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An atom in molecules study of infrared intensity enhancements in fundamental donor stretching bands in hydrogen bond formation.
    Terrabuio LA; Richter WE; Silva AF; Bruns RE; Haiduke RL
    Phys Chem Chem Phys; 2014 Dec; 16(45):24920-8. PubMed ID: 25325528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electronic Distribution of S
    Duarte LJ; Bruns RE
    J Chem Theory Comput; 2022 Apr; 18(4):2437-2447. PubMed ID: 35258284
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Infrared intensity analysis of hydroxyl stretching modes in carboxylic acid dimers by means of the charge-charge flux-dipole flux model.
    da Silva NA; Haiduke RLA
    J Comput Chem; 2019 Oct; 40(28):2482-2490. PubMed ID: 31290161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphical Transition Moment Decomposition and Conceptual Density Functional Theory Approaches to Study the Fundamental and Lower-Level Overtone Absorption Intensities of Some OH Stretching Vibrations.
    Tsuyuki M; Furudate S; Kugaya Y; Yabushita S
    J Phys Chem A; 2021 Mar; 125(10):2101-2113. PubMed ID: 33663218
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Charge-Charge Flux-Dipole Flux Analysis of Simple Molecular Systems with Halogen Bonds.
    Martins Filho PEC; Haiduke RLA
    J Phys Chem A; 2024 Mar; 128(11):2058-2071. PubMed ID: 38457530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An atomic charge-charge flux-dipole flux atom-in-molecule decomposition for molecular dipole-moment derivatives and infrared fundamental intensities.
    Haiduke RL; Bruns RE
    J Phys Chem A; 2005 Mar; 109(11):2680-8. PubMed ID: 16833574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FTIR and dispersive gas phase fundamental infrared intensities of the fluorochloromethanes: Comparison with QCISD/cc-pVTZ results.
    Duarte LJ; Silva AF; Richter WE; Bruns RE
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():269-275. PubMed ID: 30029189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the robustness of the charge-charge transfer-dipolar polarization model and infrared intensities.
    Silva AF; Duarte LJ; Bruns RE
    J Mol Model; 2018 Jun; 24(7):182. PubMed ID: 29959583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The infrared vibrational intensities and polar tensors of HFCO and DFCO.
    Martins HP; Haiduke RL; Bruns RE
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Nov; 60(13):2947-52. PubMed ID: 15477129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The infrared fundamental intensities and polar tensor of CF4.
    de Oliveira AE; Haiduke RL; Bruns RE
    Spectrochim Acta A Mol Biomol Spectrosc; 2000 Jun; 56A(7):1329-35. PubMed ID: 10888438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical analysis of weak adjacent substituent effect on the overtone intensities of XH (X = C, O) stretching vibrations.
    Takahashi H; Yabushita S
    J Phys Chem A; 2013 Jul; 117(26):5491-502. PubMed ID: 23731067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical calculations of the molecular properties of maleimide and its dimer.
    Aguiar EC; da Silva JB; Ramos MN
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):5-9. PubMed ID: 18162434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. QTAIM investigation of the electronic structure and large Raman scattering intensity of bicyclo-[1.1.1]-pentane.
    Dawes R; Dwyer JR; Qu W; Gough KM
    J Phys Chem A; 2011 Nov; 115(45):13149-57. PubMed ID: 21942817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The C-H stretch intensities of polycyclic aromatic hydrocarbon cations. Origins and astrophysical implications.
    Schmidt TW; Pino T; Bréchignac P
    J Phys Chem A; 2009 Apr; 113(15):3535-41. PubMed ID: 19320445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Infrared intensities of some SiH-containing compounds in the gas-phase.
    Coats AM; McKean DC
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jan; 61(3):455-69. PubMed ID: 15582813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformational Analysis and Electronic Interactions of Some 4'-Substituted-2-ethylthio-phenylacetates.
    Rodrigues DN; Ducati LC; Olivato PR; Dal Colle M
    J Phys Chem A; 2015 Apr; 119(16):3823-32. PubMed ID: 25839322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined IR/NIR and density functional theory calculations analysis of the solvent effects on frequencies and intensities of the fundamental and overtones of the C ═ O stretching vibrations of acetone and 2-hexanone.
    Chen Y; Morisawa Y; Futami Y; Czarnecki MA; Wang HS; Ozaki Y
    J Phys Chem A; 2014 Apr; 118(14):2576-83. PubMed ID: 24654701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.