These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 27306189)
1. Study on the Electrochemical Reaction Mechanism of ZnFe2O4 by In Situ Transmission Electron Microscopy. Su Q; Wang S; Yao L; Li H; Du G; Ye H; Fang Y Sci Rep; 2016 Jun; 6():28197. PubMed ID: 27306189 [TBL] [Abstract][Full Text] [Related]
2. In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3/graphene anode during lithiation-delithiation processes. Su Q; Xie D; Zhang J; Du G; Xu B ACS Nano; 2013 Oct; 7(10):9115-21. PubMed ID: 24015669 [TBL] [Abstract][Full Text] [Related]
3. Self-Assembled Framework Formed During Lithiation of SnS Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057 [TBL] [Abstract][Full Text] [Related]
4. Inheritance of Crystallographic Orientation during Lithiation/Delithiation Processes of Single-Crystal α-Fe2O3 Nanocubes in Lithium-Ion Batteries. Ma X; Zhang M; Liang C; Li Y; Wu J; Che R ACS Appl Mater Interfaces; 2015 Nov; 7(43):24191-6. PubMed ID: 26458272 [TBL] [Abstract][Full Text] [Related]
5. In Situ Transmission Electron Microscopy Observation of the Lithiation-Delithiation Conversion Behavior of CuO/Graphene Anode. Su Q; Yao L; Zhang J; Du G; Xu B ACS Appl Mater Interfaces; 2015 Oct; 7(41):23062-8. PubMed ID: 26437926 [TBL] [Abstract][Full Text] [Related]
6. New Insights into Electrochemical Lithiation/Delithiation Mechanism of α-MoO3 Nanobelt by in Situ Transmission Electron Microscopy. Xia W; Zhang Q; Xu F; Sun L ACS Appl Mater Interfaces; 2016 Apr; 8(14):9170-7. PubMed ID: 27008317 [TBL] [Abstract][Full Text] [Related]
7. In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2. Gregorczyk KE; Liu Y; Sullivan JP; Rubloff GW ACS Nano; 2013 Jul; 7(7):6354-60. PubMed ID: 23782274 [TBL] [Abstract][Full Text] [Related]
8. Visualizing the electrochemical reaction of ZnO nanoparticles with lithium by in situ TEM: two reaction modes are revealed. Su Q; Dong Z; Zhang J; Du G; Xu B Nanotechnology; 2013 Jun; 24(25):255705. PubMed ID: 23723187 [TBL] [Abstract][Full Text] [Related]
9. α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. Ji L; Toprakci O; Alcoutlabi M; Yao Y; Li Y; Zhang S; Guo B; Lin Z; Zhang X ACS Appl Mater Interfaces; 2012 May; 4(5):2672-9. PubMed ID: 22524417 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of hollow alpha-Fe2O3 spheres with carbon coating for Li-ion battery. Du Z; Zhang S; Zhao J; Wu X; Lin R J Nanosci Nanotechnol; 2013 May; 13(5):3602-5. PubMed ID: 23858911 [TBL] [Abstract][Full Text] [Related]
11. Tough germanium nanoparticles under electrochemical cycling. Liang W; Yang H; Fan F; Liu Y; Liu XH; Huang JY; Zhu T; Zhang S ACS Nano; 2013 Apr; 7(4):3427-33. PubMed ID: 23461784 [TBL] [Abstract][Full Text] [Related]
12. Direct Studies on the Lithium-Storage Mechanism of Molybdenum Disulfide. Su Q; Wang S; Feng M; Du G; Xu B Sci Rep; 2017 Aug; 7(1):7275. PubMed ID: 28779168 [TBL] [Abstract][Full Text] [Related]
13. Enhanced lithium storage in Fe2O3-SnO2-C nanocomposite anode with a breathable structure. Rahman MM; Glushenkov AM; Ramireddy T; Tao T; Chen Y Nanoscale; 2013 Jun; 5(11):4910-6. PubMed ID: 23624706 [TBL] [Abstract][Full Text] [Related]
14. Dopamine-assisted one-pot synthesis of zinc ferrite-embedded porous carbon nanospheres for ultrafast and stable lithium ion batteries. Yao X; Zhao C; Kong J; Wu H; Zhou D; Lu X Chem Commun (Camb); 2014 Dec; 50(93):14597-600. PubMed ID: 25307266 [TBL] [Abstract][Full Text] [Related]
15. Probing the Additional Capacity and Reaction Mechanism of the RuO2 Anode in Lithium Rechargeable Batteries. Kim Y; Muhammad S; Kim H; Cho YH; Kim H; Kim JM; Yoon WS ChemSusChem; 2015 Jul; 8(14):2378-84. PubMed ID: 26130378 [TBL] [Abstract][Full Text] [Related]
16. Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium ion batteries. Xia G; Li N; Li D; Liu R; Wang C; Li Q; Lü X; Spendelow JS; Zhang J; Wu G ACS Appl Mater Interfaces; 2013 Sep; 5(17):8607-14. PubMed ID: 23947768 [TBL] [Abstract][Full Text] [Related]
17. Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Wang JZ; Zhong C; Wexler D; Idris NH; Wang ZX; Chen LQ; Liu HK Chemistry; 2011 Jan; 17(2):661-7. PubMed ID: 21207587 [TBL] [Abstract][Full Text] [Related]
18. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Gu M; Parent LR; Mehdi BL; Unocic RR; McDowell MT; Sacci RL; Xu W; Connell JG; Xu P; Abellan P; Chen X; Zhang Y; Perea DE; Evans JE; Lauhon LJ; Zhang JG; Liu J; Browning ND; Cui Y; Arslan I; Wang CM Nano Lett; 2013; 13(12):6106-12. PubMed ID: 24224495 [TBL] [Abstract][Full Text] [Related]
19. Atomic resolution study of reversible conversion reaction in metal oxide electrodes for lithium-ion battery. Luo L; Wu J; Xu J; Dravid VP ACS Nano; 2014 Nov; 8(11):11560-6. PubMed ID: 25337887 [TBL] [Abstract][Full Text] [Related]
20. In situ atomic-scale imaging of phase boundary migration in FePO(4) microparticles during electrochemical lithiation. Zhu Y; Wang JW; Liu Y; Liu X; Kushima A; Liu Y; Xu Y; Mao SX; Li J; Wang C; Huang JY Adv Mater; 2013 Oct; 25(38):5461-6. PubMed ID: 23873760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]