These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27306259)

  • 1. Monitoring tetracycline through a solid-state nanopore sensor.
    Zhang Y; Chen Y; Fu Y; Ying C; Feng Y; Huang Q; Wang C; Pei DS; Wang D
    Sci Rep; 2016 Jun; 6():27959. PubMed ID: 27306259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved genetically modified Escherichia coli biosensor for amperometric tetracycline measurement.
    Song W; Pasco N; Gooneratne R; Weld RJ
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):9081-6. PubMed ID: 23893325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an epigenetic tetracycline sensor system based on DNA methylation.
    Ullrich T; Weirich S; Jeltsch A
    PLoS One; 2020; 15(5):e0232701. PubMed ID: 32379807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of a single enzyme molecule based on a solid-state nanopore sensor.
    Tan S; Gu D; Liu H; Liu Q
    Nanotechnology; 2016 Apr; 27(15):155502. PubMed ID: 26937593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of two fabricated aptasensors based on modified carbon paste/oleic acid and magnetic bar carbon paste/Fe3O4@oleic acid nanoparticle electrodes for tetracycline detection.
    Jahanbani S; Benvidi A
    Biosens Bioelectron; 2016 Nov; 85():553-562. PubMed ID: 27219679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanopore Blockade Sensors for Quantitative Analysis Using an Optical Nanopore Assay.
    Doan THP; Fried JP; Tang W; Hagness DE; Yang Y; Wu Y; Tilley RD; Gooding JJ
    Nano Lett; 2024 May; 24(21):6218-6224. PubMed ID: 38757765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single molecule sensing with solid-state nanopores: novel materials, methods, and applications.
    Miles BN; Ivanov AP; Wilson KA; Doğan F; Japrung D; Edel JB
    Chem Soc Rev; 2013 Jan; 42(1):15-28. PubMed ID: 22990878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A recombinant Escherichia coli sensor strain for the detection of tetracyclines.
    Korpela MT; Kurittu JS; Karvinen JT; Karp MT
    Anal Chem; 1998 Nov; 70(21):4457-62. PubMed ID: 9823708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances of nanopore-based sensing techniques for contaminants evaluation of food and agricultural products.
    Tan X; Lv C; Chen H
    Crit Rev Food Sci Nutr; 2023; 63(31):10866-10879. PubMed ID: 35687354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities.
    Mackie RI; Koike S; Krapac I; Chee-Sanford J; Maxwell S; Aminov RI
    Anim Biotechnol; 2006; 17(2):157-76. PubMed ID: 17127527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical Sensing of Phosphonates by Functional Coupling of Phosphonate Binding Protein PhnD to Solid-State Nanopores.
    Bernhard M; Diefenbach M; Biesalski M; Laube B
    ACS Sens; 2020 Jan; 5(1):234-241. PubMed ID: 31829017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single Molecule Identification and Quantification of Glycosaminoglycans Using Solid-State Nanopores.
    Im J; Lindsay S; Wang X; Zhang P
    ACS Nano; 2019 Jun; 13(6):6308-6318. PubMed ID: 31121093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SEM-induced shrinking of solid-state nanopores for single molecule detection.
    Prabhu AS; Freedman KJ; Robertson JW; Nikolov Z; Kasianowicz JJ; Kim MJ
    Nanotechnology; 2011 Oct; 22(42):425302. PubMed ID: 21937789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an indirect competitive assay-based aptasensor for highly sensitive detection of tetracycline residue in honey.
    Wang S; Yong W; Liu J; Zhang L; Chen Q; Dong Y
    Biosens Bioelectron; 2014 Jul; 57():192-8. PubMed ID: 24583691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Construction of a Recombinant Lac Z Gene in Yeast Cell for Rapid Detection of Tetracycline Antibiotics].
    Xu X; Tian Y; Wang C; Zhou T; Zhou L; Li X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Jun; 33(3):481-7. PubMed ID: 29709147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microcantilever-based platforms as biosensing tools.
    Alvarez M; Lechuga LM
    Analyst; 2010 May; 135(5):827-36. PubMed ID: 20419229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Sensing and Discrimination among Ubiquitin and Ubiquitin Chains Using Solid-State Nanopores.
    Nir I; Huttner D; Meller A
    Biophys J; 2015 May; 108(9):2340-9. PubMed ID: 25954891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic nanopore sensors for the detection of terrorist agents: current status and challenges.
    Liu A; Zhao Q; Guan X
    Anal Chim Acta; 2010 Aug; 675(2):106-15. PubMed ID: 20800721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.
    Schmidt T; Zhang M; Sychugov I; Roxhed N; Linnros J
    Nanotechnology; 2015 Aug; 26(31):314001. PubMed ID: 26180043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel generic dipstick-based technology for rapid and precise detection of tetracycline, streptogramin and macrolide antibiotics in food samples.
    Link N; Weber W; Fussenegger M
    J Biotechnol; 2007 Feb; 128(3):668-80. PubMed ID: 17196286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.