These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27306310)

  • 1. Microfluidic Devices for the Measurement of Cellular Secretion.
    Schrell AM; Mukhitov N; Yi L; Wang X; Roper MG
    Annu Rev Anal Chem (Palo Alto Calif); 2016 Jun; 9(1):249-69. PubMed ID: 27306310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serial immunoassays in parallel on a microfluidic chip for monitoring hormone secretion from living cells.
    Dishinger JF; Kennedy RT
    Anal Chem; 2007 Feb; 79(3):947-54. PubMed ID: 17263320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring hormone and small molecule secretion dynamics from islets-on-chip.
    Lenhart AE; Kennedy RT
    Anal Bioanal Chem; 2023 Feb; 415(4):533-544. PubMed ID: 36459167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic perfusion systems for secretion fingerprint analysis of pancreatic islets: applications, challenges and opportunities.
    Castiello FR; Heileman K; Tabrizian M
    Lab Chip; 2016 Feb; 16(3):409-31. PubMed ID: 26732665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay.
    Roper MG; Shackman JG; Dahlgren GM; Kennedy RT
    Anal Chem; 2003 Sep; 75(18):4711-7. PubMed ID: 14674445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic Chip with Integrated Electrophoretic Immunoassay for Investigating Cell-Cell Interactions.
    Lu S; Dugan CE; Kennedy RT
    Anal Chem; 2018 Apr; 90(8):5171-5178. PubMed ID: 29578696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Device for the Measurement of Amino Acid Secretion Dynamics from Murine and Human Islets of Langerhans.
    Wang X; Yi L; Roper MG
    Anal Chem; 2016 Mar; 88(6):3369-75. PubMed ID: 26891222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of microfluidic technology to pancreatic islet research: first decade of endeavor.
    Wang Y; Lo JF; Mendoza-Elias JE; Adewola AF; Harvat TA; Kinzer KP; Lee D; Qi M; Eddington DT; Oberholzer J
    Bioanalysis; 2010 Oct; 2(10):1729-44. PubMed ID: 21083325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-templated, fully automated microfluidic input/output multiplexer for endocrine tissue culture and secretion sampling.
    Li X; Brooks JC; Hu J; Ford KI; Easley CJ
    Lab Chip; 2017 Jan; 17(2):341-349. PubMed ID: 27990542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Culture and Sampling of Primary Adipose Tissue in Practical Microfluidic Systems.
    Brooks JC; Judd RL; Easley CJ
    Methods Mol Biol; 2017; 1566():185-201. PubMed ID: 28244052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis.
    Mirasoli M; Guardigli M; Michelini E; Roda A
    J Pharm Biomed Anal; 2014 Jan; 87():36-52. PubMed ID: 24268500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pumpless microfluidic device driven by surface tension for pancreatic islet analysis.
    Xing Y; Nourmohammadzadeh M; Elias JE; Chan M; Chen Z; McGarrigle JJ; Oberholzer J; Wang Y
    Biomed Microdevices; 2016 Oct; 18(5):80. PubMed ID: 27534648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Online fluorescence anisotropy immunoassay for monitoring insulin secretion from islets of Langerhans.
    Schrell AM; Mukhitov N; Yi L; Adablah JE; Menezes J; Roper MG
    Anal Methods; 2017 Jan; 9(1):38-45. PubMed ID: 28458724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of Langerhans islets by dielectrophoresis.
    Burgarella S; Merlo S; Figliuzzi M; Remuzzi A
    Electrophoresis; 2013 Apr; 34(7):1068-75. PubMed ID: 23161152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the entrainment window of islets of Langerhans by microfluidic delivery of a chirped glucose waveform.
    Dhumpa R; Truong TM; Wang X; Roper MG
    Integr Biol (Camb); 2015 Sep; 7(9):1061-7. PubMed ID: 26211670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen control with microfluidics.
    Brennan MD; Rexius-Hall ML; Elgass LJ; Eddington DT
    Lab Chip; 2014 Nov; 14(22):4305-18. PubMed ID: 25251498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chapter 4: Combining microfluidics and quantitative fluorescence microscopy to examine pancreatic islet molecular physiology.
    Rocheleau JV; Piston DW
    Methods Cell Biol; 2008; 89():71-92. PubMed ID: 19118673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of cell and particle trapping in microfluidic systems.
    Nilsson J; Evander M; Hammarström B; Laurell T
    Anal Chim Acta; 2009 Sep; 649(2):141-57. PubMed ID: 19699390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Surface Treatments of PDMS Microfluidic Devices for Improving Small-Molecule Recovery with Application to Monitoring Metabolites Secreted from Islets of Langerhans.
    Lenhart AE; Kennedy RT
    ACS Meas Sci Au; 2023 Oct; 3(5):380-389. PubMed ID: 37868359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient adenoviral transduction of pancreatic islets using a microfluidic device.
    Silva PN; Atto Z; Regeenes R; Tufa U; Chen YY; Chan WC; Volchuk A; Kilkenny DM; Rocheleau JV
    Lab Chip; 2016 Aug; 16(15):2921-34. PubMed ID: 27378588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.